Используя данные Таблицы 1 (Приложение 1), я рассчитал линейный коэффициент корреляции r. Но чтобы использовать формулу для линейного коэффициента корреляции рассчитаем дисперсию результативного признака σy:
Квадрат линейного коэффициента корреляции r2 называется линейным коэффициентом детерминации. Из определения коэффициента детерминации очевидно, что его числовое значение всегда заключено в пределах от 0 до 1, то есть 0 ≤ r2 ≤ 1. Степень тесноты связи полностью соответствует теоретическому корреляционному отношению, которое является более универсальным показателем тесноты связи по сравнению с линейным коэффициентом корреляции.
Факт совпадений и несовпадений значений теоретического корреляционного отношения η и линейного коэффициента корреляции r используется для оценки формы связи. [4]
Выше отмечалось, что посредством теоретического корреляционного отношения измеряется теснота связи любой формы, а с помощью линейного коэффициента корреляции – только прямолинейной. Следовательно, значения η и r совпадают только при наличии прямолинейной связи. Несовпадение этих величин свидетельствует, что связь между изучаемыми признаками не прямолинейная, а криволинейная. Установлено, что если разность квадратов η и r не превышает 0,1 , то гипотезу о прямолинейной форме связи можно считать подтвержденной. В моем случае наблюдается примерное совпадение линейного коэффициента детерминации и теоретического корреляционного отношения, что дает мне основание считать связь между капиталом банков и их работающими активами прямолинейной.
При линейной однофакторной связи t-критерий можно рассчитать по формуле:
,где (n - 2) – число степеней свободы при заданном уровне значимости α и объеме выборки n.
Так, для коэффициента корреляции между капиталом и работающими активами получается:
Если сравнить полученное tрасч с критическим значением из таблицы Стьюдента, где ν=30, а α=0,01 (tтабл=2,750), то полученное значение t-критерия будет больше табличного, что свидетельствует о значимости коэффициента корреляции и существенной связи между капиталом и работающими активами.
Таким образом, построенная регрессионная модель ŷ=245,75+1,42x в целом адекватна, и выводы, полученные по результатам малой выборки можно с достаточной вероятностью распространить на всю гипотетическую генеральную совокупность.
Экономическая интерпретация параметров регрессии
После проверки адекватности, установления точности и надежности построенной модели (уравнения регрессии), ее необходимо проанализировать. Прежде всего, нужно проверить, согласуются ли знаки параметров с теоретическими представлениями и соображениями о направлении влияния признака-фактора на результативный признак (показатель).
В рассмотренном уравнении ŷ=245,75+1,42х, характеризующем зависимость размера работающих активов (у) от капиталов банков (х), параметр а1>0. Следовательно, с возрастанием размера капитала банка размер работающих активов увеличивается.
Из уравнения следует, что возрастание капитала банка на 1 млн рублей приводит к увеличению работающих активов в среднем на 1,4 млн рублей (величину параметра а1).
Для удобства интерпретации параметра a1 используют коэффициент эластичности. Он показывает средние изменения результативного признака при изменении факторного признака на 1% и вычисляется по формуле, %:
.В представленном анализе деятельности банков эта величина равна:
Это означает, что с увеличением размера капитала на 1% следует ожидать повышения размера работающих активов банков в среднем на 0,78%.
Этот вывод справедлив только для данной совокупности банков при конкретных условиях их деятельности.
Если же эти банки и условия считать типичными, то коэффициент регрессии может быть применен для расчета размера работающих активов по их капиталу и для других банков.
Имеет смысл вычислить остатки εi= y – ŷ, характеризующие отклонение i-х наблюдений от значений, которые следует ожидать в среднем.
Анализируя остатки, можно сделать ряд выводов о деятельности банков. Значения остатков (Таблица 1, графа 8, Приложение 1) имеют как положительные, так и отрицательные отклонения от ожидаемого. Таким образом, выявляются банки, которые вкладывают больше денежных средств в оборот (положительные значения), и банки, предпочитающие пускать в оборот небольшую часть своих денежных средств (отрицательные значения остатков).
В итоге положительные отклонения размеров работающих активов уравновешиваются отрицательными значениями, то есть получается ∑εi=0.
Таким образом, в данной работе я установил корреляционную зависимость показателей 32 российских банков, провел регрессионный анализ и нашёл регрессионную модель данной взаимосвязи показателей.
Полученное уравнение ŷ=245,75+1,42х позволяет проиллюстрировать зависимость размера работающих активов банков от размера их капитала.
А также я проверил мою модель на адекватность по критерию Стьюдента, результат оказался положительным (модель адекватна, т.е. ее можно применять), а затем дал экономическую оценку этой модели.
И так, с помощью корреляционно-регрессионного анализа, я исследовал показатели банков.
3.Применение регрессионного анализа для изучения объекта исследования
На основе ранжированных данных о производительности труда и стаже работы двадцати рабочих бригады ЗАО «Роспан Интернешнл» (Таблица 2, Приложение 3) необходимо:
1.Установить результативный и факторный признаки.
2.Определить наличие и форму корреляционной связи между производительностью труда рабочих бригады и стажем работы.
3.Построить на графике поле корреляции и эмпирическую линию корреляционной связи.
4.Построить регрессионную модель парной корреляционной зависимости и определить её параметры.
5.Построить на графике теоретическую кривую корреляционной зависимости.
6.Рассчитать показатели тесноты связи между выработкой рабочего и стажем работы. Дать качественную оценку степени тесноты связи.
7.Оценить существенность параметров регрессивной модели и показателей тесноты связи. Дать оценку надёжности уравнения регрессии.
8.Дать экспериментальную интерпретацию параметров построенной регрессионной модели.
9.На основании регрессионной модели парной зависимости указать доверительные границы, в которых будет находиться прогнозное значение уровня производительности труда рабочего бригады, если стаж его работы составит 10,5 лет при уровне доверительной вероятности 95%.
Решение:
Установим результативный и факторный признаки: результативный признак (y) - выработка, факторный (x) - стаж работы, лет.
Определим наличие и форму корреляционной связи между производительностью труда рабочих бригады и стажем работы. Так как увеличение значений признака-фактора влечёт за собой увеличение величины результативного признака. То можно предположить наличие прямой корреляционной связи между выработкой и стажем работы. Проведём группировку работников бригады по признаку-фактору - стажу работы. Результаты оформим в Таблицу 2 (Приложение 3). Сравнив средние значения результативного признака по группам, можно сделать вывод о наличии связи между выработкой и стажем работы. Причём она будет являться прямой, так как рост значений признака фактора влечёт рост средних значений признака результата.
Построим поле корреляции.
Построим регрессионную модель парной корреляционной зависимости и определим её параметры:
- уравнение парной линейной корреляционной зависимости (регрессионная модель). → , →Найдём среднее произведение факторного и результативного признака по формуле:
; .Рассчитаем средние значение факторного и результативного признака:
факторного по формуле:
; .результативного, по формуле:
; .Подставим значения результативного и факторного признака в уравнение парной линейной корреляционной зависимости получим регрессионную модель парной корреляционной зависимости:
- регрессионная модель зависимости выработки от стажа работы.