Смекни!
smekni.com

Балансовый метод в статистическом изучении трудовых показателей 3 (стр. 4 из 7)

Таблица 6. Определение характеристик ряда распределения

Группы предприятий по производительности труда, млн.руб Число предприятий,ni

хi

хini

0,12-0,168 3 0,144 0,432 0,011 0,033
0,168-0,216 4 0,192 0,768 0,003 0,012
0,216-0,264 12 0,240 2,88 0,000064 0,000768
0,264-0,312 7 0,288 2,016 0,0016 0,0112
0,312-0,36 4 0,336 1,344 0,07744 0,30976
30 - 7,44 - 0,367

Средняя производительность труда ряда распределения равна:

ВЫВОД: средняя величина производительность труда по предприятиям составила 0,248.

Исчислим дисперсию:

Среднеквадратическое отклонение:

ВЫВОД: среднеквадратическое отклонение показывает, что значение признака в совокупности отклоняется от средней величины в ту или иную сторону в среднем на 0,1095

Коэффициент вариации:

ВЫВОД: значение V=44,15% превышает 33%, следовательно, вариация в исследуемой совокупности значительна и совокупность по этому признаку не однородна. Расхождения между значениями Х, Мо, Ме значительное.

Задание №2.

Связь между признаками – среднесписочная численность работников и уровень производительности труда.

1) По условию задания №2 факторным является признак Уровень

производительности труда (Х), результативным – среднесписочная численность работников (У).

Строим аналитическую группировку, характеризующую зависимость между факторным признаком Х и результативным признаком Y. Макет аналитической таблицы имеет следующий вид:

Таблица 7. Зависимость производительности труда от среднесписочной численности работников.

Номер группы

Группы предприятий по уровню производительности труда, млн.руб.,

Х

Число предприятий,

fi

Среднесписочная численность работников, чел.
всего

в среднем на одно педприятие,

yj

1 0,12 – 0, 168 3 406 135,3333
2 0,168 – 0,216 4 634 158,5
3 0,216 – 0,264 12 1980 165
4 0,264 – 0,312 7 1330 190
5 0,312 – 0,36 4 840 210
Итого: 30 5190 858,8333

ВЫВОД: Анализ данных табл. 7 показывает, что с увеличением объема производительности труда от группы к группе систематически возрастает и среднесписочная численность работников по каждой группе предприятий, что свидетельствует о наличии прямой корреляционной связи между исследуемыми признаками.

2) Для построения корреляционной таблицы необходимо знать величины

и границы интервалов по двум признакам X и Y. Величина интервала и границы интервалов для факторного признака Хуровень производительности труда известны из табл. 8. Для результативного признака Yсреднесписочная численность работников величина интервала определяется по формуле

,

при k= 5, уmax=220 чел., уmin= 120 чел.

Таким образом h = 20 чел.

Границы интервалов ряда распределения результативного признака Y имеют следующий вид (табл. 8):

Таблица 8.

Номер группы

Нижняя граница,

Чел.

Верхняя граница,

Чел.

1 120 140
2 140 160
3 160 180
4 180 200
5 200 220

Подсчитывая с использованием принципа полуоткрытого интервала[ ) число банков, входящих в каждую группу (частоты групп), получаем интервальный ряд распределения результативного признака (табл. 9).

Таблица 9 Распределение предприятий по численности рабочих

Группы предприятий по сумме рабочих

х

Число предприятий,

fj

120 -140 3
140 -160 4
160 -180 12
180 -200 7
200 -220 4
Итого: 30

Используя группировки по факторному и результативному признакам, строим корреляционную таблицу (табл. 10):

Таблица 10.Корреляционная таблица зависимости среднесписочной

численности рабочих от уровня производительности труда.

Группы предприятий по уровню производительности труда, млн.руб.,

Группы предприятий по сумме рабочих, чел.

120 -140 140 -160 160 -180 180 -200 200 -220 Итого
0,12 – 0, 168 2 1 - - - 3
0,168 – 0,216 - 4 - - - 4
0,216 – 0,264 - - 12 - - 12
0,264 – 0,312 - - - 7 - 7
0,312 – 0,36 - - - - 4 4
Итого: 2 5 12 7 4 30

ВЫВОД: Анализ данных табл. 10 показывает, что распределение частот групп произошло вдоль диагонали, идущей из левого верхнего угла в правый нижний угол таблицы. Это свидетельствует о наличии прямой корреляционной связи между производительностью труда и среднесписочной суммой рабочих.

3) Для измерения тесноты связи между факторным и результативным

признаками рассчитывают специальные показатели – эмпирический коэффициент детерминации

и эмпирическое корреляционное отношение
.

Эмпирический коэффициент детерминации

оценивает, насколько вариация результативного признака Y объясняется вариацией фактора Х (остальная часть вариации Y объясняется вариацией прочих факторов). Показатель
рассчитывается как доля межгрупповой дисперсии в общей дисперсии по формуле
,

где

– общая дисперсия признака Y,

– межгрупповая (факторная) дисперсия признака Y.

Общая дисперсия

характеризует вариацию результативного признака, сложившуюся под влиянием всех действующих на Y факторов (систематических и случайных). Этот показатель вычисляется по формуле

,

где yi – индивидуальные значения результативного признака;

– общая средняя значений результативного признака;

n – число единиц совокупности.

Общая средняя

вычисляется как средняя арифметическая простая по всем единицам совокупности:

Расчет

по формуле:
=173 чел.

Для расчета общей дисперсии

применяется вспомогательная таблица 11:

Таблица 11. Вспомогательная таблица для расчета общей

дисперсии.

Номербанкап/п Среднесписочная численность работников, чел.
1 162 -11 121 26244
2 156 -17 289 24336
3 179 6 36 32041
4 194 21 441 37636
5 165 -8 64 27225
6 158 -15 225 24964
7 220 47 2209 48400
8 190 17 289 36100
9 163 -10 100 26569
10 159 -14 196 25281
11 167 -6 36 27889
12 205 32 1024 42025
13 187 14 196 34969
14 161 -12 144 25921
15 120 -53 2809 14400
16 162 -11 121 26244
17 188 15 225 35344
18 164 -9 81 26896
19 192 19 361 36864
20 130 -43 1849 16900
21 159 -14 196 25281
22 162 -11 121 26244
23 193 20 400 37249
24 158 -15 225 24964
25 168 -5 25 28224
26 208 35 1225 43264
27 166 -7 49 27556
28 207 34 1156 42849
29 161 -12 144 25921
30 186 13 169 34596
Итого 0 14526 912396

Расчет общей дисперсии по формуле :

= 482,2