Смекни!
smekni.com

Эвристические методы периодизации (стр. 3 из 9)

,

Где

- упорядоченные длины связей,
- отношения длин связей.

Следующая операция заключается в нахождении значения k, для которого выполняется соотношение, являющееся основанием разбиения множества естественным образом. Этой цели служит неравенство:

(для k=2,3,…,n-1)

Может оказаться, что в ряду вычисленных отношений приведенное неравенство будет выполнятся несколько раз. В этом случае вводится дополнительное условие. Оно позволяет выбрать лучшее из двух естественных разбиений

и
. Это дополнительное условие определяется соотношением
. Если оно выполняется, то можно утверждать, что лучшим является разбиение на k частей.

2.2 Метод шаров.

Перед описанием этого метода дадим геометрическую модель для простейшего случая двумерного пространства. Единицы исследуемого множества характеризуются только двумя признаками и изображаются точками на плоскости. Тогда их можно представить как множество точек

с координатами (
) при i=1,…,w, причем w- число элементов множества.

Для выполнения дальнейших преобразований необходимо знать некоторую величину

. Если эта величина известна, то поступают следующим образом. Из каждой точки
, как центра, строится круг радиусом
. Затем подсчитывается число точек, находящихся внутри каждого круга. Тем самым находится первое подмножество. Элементами его являются элементы круга, содержащего наибольшее число точек. Если есть несколько кругов с одним и тем же числом точек, то первое подмножество образуют точки круга, центр которого расположен ближе всего к началу системы координат.

Дальнейшее разбиение производится подобным же образом, но число элементов множества уменьшается за счет элементов первого подмножества


Рис.2.6 Разбиение множества единиц, характеризуемых двумя признаками.

На рис. 2.6 показано расположение пяти точек-единиц. Поскольку эти единицы описываются только двумя признаками, их можно поместить на плоскости. После вычерчивания кругов и подсчета числа точек в них не трудно убедится, что первое подмножество образуют точки- единицы заштрихованного круга.

Опишем теперь общий порядок действий, относящихся к пространству произвольной размерности.

Пусть дано множество

точек
с координатами (
), причем i=1,2,…,w. Для каждой точки
строится шар заданного радиуса
:

.

Затем подсчитывается число точек

,находящихся внутри каждого шара:
, где
обозначает подмножество i множества
. Оно образовано точками
, удовлетворяющими условию
.

Если обозначить через

, объем подмножества
, то
- величина, определяющая первое выделяемое подмножество. В случае существования нескольких подмножеств с максимальным объемом исчисляют расстояния центров выбранных шаров от начала системы координат. Первое подмножество образуют единицы, содержащиеся в шаре, ближе всего находящегося от начала системы координат. Это подмножество обозначаем символом
.

Дальнейшие действия производятся таким же самым образом , только относятся не ко всем объектам, а лишь к тем, которые остались после исключения первого подмножества. Это значит, что при дальнейшем выделении подмножеств рассматривается множество

.

Описанная процедура, очевидно, продолжается до момента полного исчерпания множества

.

Теперь осталось выяснить проблему, связанную с оценкой величины

. При оценке этой величины рассматривают два случая:

В первом

Во втором

, причем
;
, где i,j=1,2,…,w.

Величина

остается постоянной.

В результате применения рассмотренного метода получаются подмножества, однородные в смысле изотропности, т.е. подмножества точек-данных, которые расположены в многомерном пространстве так, что по форме облако рассеивания больше похоже на шар чем на эллипсоид.

С точки зрения потребностей экономического моделирования подобные подмножества представляют собой результат искусственного , навязанного, а не естественного разбиения исследуемой совокупности объектов. При таком способе разбиения существует потенциальная возможность разделить действительно однородные объекты. Подобное нежелательное разбиение может возникнуть вследствие того, что в значениях признаков присутствуют обе компоненты( структуры и потенциала).

2.3 Метод корреляционных плеяд.

Метод корреляционных плеяд самый первый из эвристических методов классификации данных и он наименее формализован. Выглядит этот метод очень трудоемким особенно это становится явным при достаточно большом числе объектов.

Преимущество этого метода в том что он учитывает все связи он не отбрасывает как два предыдущих метода «не нужную информацию». Исторически метод корреляционных плеяд применяется и используется до сих пор к матрицам корреляции. Но в принципе технику этого метода можно применить и получить корректные данные на матрицах расстояний.

Осуществляется следующим образом:

В матрице коэффициентов корреляции выбирается максимальный по абсолютной величине коэффициент корреляции( не считая диагональных). Пусть им оказался

. Чертим два кружка, соответствующие признакам
и
, и соединяем их линией, над которой пишем значение
. Затем находим наибольший по абсолютной величине коэффициент в
-том столбце матрицы корреляции( он будет соответствовать признаку, наиболее тесно после
связанному с
). Выбираем больший из этих двух коэффициентов. Пусть им оказался
. Чертим кружок
, соединяем его с кружком
, над связью пишем
. Далее находим признаки, наиболее тесно связанные с двумя последними рассмотренными( в данном случае
и
), и повторяя процедуру выбора, выбираем из двух соответствующих коэффициентов корреляции наибольший по абсолютной величине. Продолжая построение, на каждом шаге находим признак, наиболее тесно связанный с одним из двух признаков, отобранных на предыдущем этапе. Построение чертежа завершим, когда в нем окажется m кружков(m - число признаков). Выбираем пороговую величину h и исключаем из схемы связи, соответствующие меньшим чем h коэффициентам парной корреляции. Величину h выбираем до тех пор, пока не получим нормальных групп(плеяд) признаков(h является порогом, при переходе через который происходит рассеивание групп на отдельные, не связанные признаки).