Смекни!
smekni.com

Практическое применение законов распределения при изучении уровня жизни населения (стр. 4 из 6)

Динамика общего потребления изучается с помощью агрегатного индекса объема потребления Iоп, который рассчитывается следующим образом:

(19)

где Iоп - агрегатный индекс объема потребления;

a1, a0 - количество потребленных товаров в отчетном и базисном периодах;

b1, b0 - количество потребленных услуг в отчетном и базисном периодах;

p0, r0 - цена товара и тариф за определенную услугу в базисном периоде.

При статистическом исследовании зависимости объема потребления от дохода используется коэффициент эластичности Кэ, который характеризует величину возрастания или снижения потребления товаров и услуг при росте дохода на 1% (в теории статистики это формула А. Маршалла):

(20)

где Кэ - коэффициент эластичности;

х, у - начальные доход и потребление;

x, y – их приращения за некоторый период (или при переходе от одной группы к другой).

Если Кэ > 1, то потребление растет быстрее, чем доходы.

Если Кэ = 1, то между доходом и потреблением имеет место пропорциональная зависимость.

Если Кэ < 1, то доход растет быстрее, чем потребление.


2.4. Показатели социальной дифференциации и бедности населения

Уровень жизни характеризуется показателями дифференциации материальной обеспеченности населения (дифференциации населения по уровню дохода), среди которых можно выделить:

· распределение населения по уровню среднедушевых денежных доходов;

· коэффициент дифференциации доходов;

· индекс концентрации доходов (коэффициент Джини);

· коэффициент бедности.

Важнейшим методом исследования дифференциации доходов населения является распределение населения по уровню среднедушевых денежных доходов на основе построения вариационных рядов. Эмпирические данные выборочного обследования бюджетов домашних хозяйств ранжируются и группируются в определенных интервалах по величине дохода. Для статистических характеристик здесь используются: среднее значение душевого дохода; модальный доход (чаще всего встречающийся уровень дохода населения); медианный доход (показатель дохода, расположенный в середине ранжированного ряда распределения); средний доход (общий средний уровень дохода всего населения).

Данные о распределении населения России по размеру среднедушевых денежных доходов с 2000 по 2006 г. Приведены в таблице 5(см. приложение 3).

Модальный и медианный доходы - это важные структурные показатели, которые характеризуют отклонение среднедушевого дохода от среднего значения для каждой группы. Как правило, результаты исследований свидетельствуют, что одна половина населения имеет доход ниже среднего, а вторая половина - выше среднего.

Широко распространен в статистических исследованиях по неравенству в распределении доходов децильный коэффициент дифференциации доходов, который исчисляется как отношение минимального дохода у 10% наиболее обеспеченных граждан к максимальному доходу 10% наименее обеспеченных граждан. Коэффициент дифференциации доходов Кd рассчитывается путем сопоставления девятого (d9) и первого (d1) децилей:

. (21)

где Кd- коэффициент дифференциации доходов;

d9 - девятый дециль;

d1 - первый дециль.

Нижний дециль (d1) – самые низкие доходы, определяется по формуле:

. (22)

Верхний предел (d9) – самые высокие доходы, определяется по формуле:

=
. (23)

Функционально очень близким к децильному коэффициенту дифференциации доходов является коэффициент фондов Кф, с помощью которого измеряют различие между суммарными (средними) значениями доходов 10% наиболее обеспеченной (Ч10) и 10% наименее обеспеченной (Ч1) части населения.

(24)

где Кф - коэффициент фондов;

Ч10 - наиболее обеспеченная часть населения;

Ч1 - наименее обеспеченная часть населения.

Индекс концентрации доходов (коэффициент Джини) КGслужит для измерения отличия фактического распределения доходов по численно равным группам населения от их равномерного распределения (степень неравенства в распределении доходов населения). Данный индекс исчисляется по формуле:

. (25)

где КG - индекс концентрации доходов (коэффициент Джини);

xi – доля населения принадлежащая к (i-1) социальной группе в общей численности населения;

yi– доля доходов, сосредоточенная у i-той социальной группы населения;

n – число социальных групп;

cumyi- кумулятивная (исчисленная нарастающим итогом) доля дохода.

Коэффициент Джини изменяется в пределах от 0 (совершенное равенство) до 1 (совершенное неравенство), т.е. чем ближе индекс к 1, тем выше поляризация доходов в обществе. В России максимальная дифференциация доходов населения достигла в 2006 г., когда коэффициент Джини имел значение 0,410 (для сравнения в 2000 г. – 0,395).

Для статистических характеристик уровня жизни важно установление границ дохода, обеспечивающих минимально допустимый уровень, т.е. определение прожиточного минимума (стоимостная оценка минимального набора продовольственных и непродовольственных товаров, а также обязательные платежи и сборы). Прожиточный минимум позволяет установить границы бедности. Данные Приведены в таблице 8 (Приложение 6).

Коэффициент бедности - относительный показатель, который рассчитывается как процентное отношение численности граждан, чьи доходы ниже прожиточного минимума, к общей численности населения страны. В настоящее время (с 1990 г.) в мире установлен порог бедности, равный 1 доллару США в день.

Теперь рассмотрим практическое применение законов распределения при изучении показателей уровня жизни населения. При изучении и решении задач по теории вероятностей и математической статистике, статистике, многомерным статистическим методам, эконометрике студенты сталкиваются с трудностями, вызванными громоздкостью и сложностью вычислительных процедур, что в конечном итоге приводит к большим интеллектуальным усилиям и неоправданным временным затратам. Чтобы улучшить содержательную часть решаемых задач; повысить эффективность учебного процесса за счет сокращения рутинных процедур, эффективного поиска правильного решения за счет быстрой, программной реализации большого количества альтернативных способов решения применяются статистические пакеты прикладных программ. C одним из них мы познакомимся в следующей главе.


3.Практическое применение законов распределения при изучении уровня жизни населения

3.1. Расчет статистических характеристик величин с использованием пакета MINITAB.

Статистический пакет MINITAB был разработан в Пенсильванском государственном университете для облегчения изучения различных статистических дисциплин. Сейчас MINITAB используется более чем в 2000 учебных заведений во всем мире. Более 75 % компаний, входящих в, так называемые Top 50 (по данным журнала Fortune), используют данный пакет в своей работе.

Статистический пакет MINITAB состоит из следующих основных окон:

- окно данных (Data Window);

- окно результатов (Session Window);

- информационное окно (Info Window);

- окно записи использованных команд (History Window);

- графическое окно (Graph Window);

- окно для помощи (Help Window).

Пример 1. По данным таблицы 10 (приложение 7) провести расчет статистических характеристик величин.

В колонках С1, С2 отражены следующие данные:

С1 – валовая доход, в среднем на человека домохозяйства;

С2 – расходы на продукты, в среднем на человека домохозяйства.

Если необходимо получить новый столбец, каждый элемент которого содержал бы сумму (разницу, произведение) двух других, то Осуществление арифметических операций над данными в колонках.

Для этого необходимо выполнить следующие действия: Calc > CalculatorНа экране появится следующее диалоговое окно:

Рис.1. Внешнийвидокна Mathematical Expressions.

Для получение описательной статистики данных, находящихся в одной колонке необходимо выполнить следующие действия: Stat > Basic Statistics > Descriptive Statistics. На экране появится следующее диалоговое окно, которое изображено на рис 2. Необходимо указать название колонки с данными, например, колонка С1-(SALARY).


Рис. 2. Внешнийвидокна Descriptive Statistics.

В результате выполнение данной операции (см. рисунок 3) в окне результатов (Session Window) появится следующие данные:

Рис. 3. Окно результатов (Session Window).

где N – количество данных в столбце SALARY

MEAN – среднее значение;

MEDIAN – значение медианы;

STDEV – среднеквадратическое отклонение;

MIN и MAX – минимальное и максимальное значение валового дохода.