Смекни!
smekni.com

Автокорреляция рядов динамики (стр. 3 из 3)

Если полученные значения ошибок не содержат автокорреляции, то ими можно заменить исходные уровни ряда и в дальнейшем использовать временной ряд ошибок для анализа взаимосвязи исходного ряда и других временных рядов.

Иногда строится модель регрессии с включением (явно) фактора времени и фиктивных переменных. При этом количество фиктивных переменных должно быть на единицу меньше числа моментов (периодов) времени внутри одного цикла колебаний. Каждая фиктивная переменная отражает сезонную (циклическую) компоненту ряда для какого-либо одного периода, поэтому она просто численно равна единице для данного периода и нулю для всех остальных периодов. Основным недостатком модели с фиктивными переменными является большое количество фиктивных переменных во многих случаях и тем самым снижение числа степеней свободы. В свою очередь, уменьшение числа степеней свободы снижает вероятность получения статистически значимых оценок параметров уравнения регрессии.

5. Изменения тенденции временного ряда

Кроме сезонных и циклических колебаний весьма важную роль играют единовременные изменения характера тенденции временного ряда. Эти (относительно) быстрые однократные изменения тренда (его характера) вызываются структурными изменениями в экономике либо мощными глобальными (внешними) факторами. Прежде всего выясняется, значимо ли повлияли общие структурные изменения на характер тренда. При условии значимости такого влияния (структурных изменений) на характер тренда используется кусочно-линейная модель регрессии. Кусочно-линейная модель означает представление исходной совокупности данных ряда в виде двух частей. Одна часть данных моделируется просто линейной моделью с одним коэффициентом регрессии (углом наклона прямой) и представляет данные до момента (периода) структурных изменений. Вторая часть данных — это тоже линейная модель, но уже с иным коэффициентом регрессии (углом наклона).

После построения двух таких моделей (подмоделей) линейной регрессии получают уравнения двух соответствующих прямых. Если структурные изменения незначительно повлияли на характер тенденции ряда, то вместо построения точной кусочно-линейной модели вполне можно использовать единую аппроксимирующую модель, т.е. одну общую линейную зависимость (одну прямую), тоже вполне приемлемо представляющую данные в целом. Незначительное ухудшение в отдельных данных при этом непринципиально.

Если строится кусочно-линейная модель, то снижается остаточная сумма квадратов по сравнению с единым для всей совокупности уравнением тренда. В то же время разделение исходной совокупности на две части ведет к потере числа наблюдений и тем самым к снижению числа степеней свободы в каждом уравнении кусочно-линейной модели. Единое уравнение для всей совокупности данных позволяет сохранить число наблюдений исходной совокупности. Остаточная сумма квадратов по этому уравнению в то же время выше, чем такая же сумма для кусочно-линейной модели. Выбор конкретной — кусочно-линейной или просто линейной — модели, т.е. единого уравнения тренда, зависит от соотношения между снижением остаточной дисперсии и потерей числа степеней свободы при переходе от единого уравнения регрессии к кусочно-линейной модели.

Для оценки этого соотношения был предложен статистический тест Грегори — Чоу. В этом тесте рассчитываются параметры уравнений трендов, вводится гипотеза о структурной стабильности тенденции исследуемого ряда динамики. Ясно, что остаточную сумму квадратов кусочно-линейной модели можно найти как сумму соответствующих сумм квадратов для обеих линейных компонент модели. Сумма числа степеней свободы этих компонент дает число степеней свободы всей модели в целом. Тогда сокращение остаточной дисперсии при переходе от единого уравнения тренда к кусочно-линейной модели — это просто остаточная сумма квадратов, из которой вычтены соответствующие суммы для обеих компонент кусочно-линейной модели. Столь же просто определяется и соответствующее число степеней свободы.

После этого рассчитывается фактическое значение F-критерия по дисперсиям на одну степень свободы. Это значение сравнивают с табличным, полученным по таблицам распределения Фишера для требуемого уровня значимости и соответствующего числа степеней свободы. Как всегда, если расчетное (фактическое) значение больше табличного (критического), то гипотеза о структурной стабильности (незначимости структурных изменений) отклоняется. Влияние же структурных изменений на динамику изучаемого показателя признается значимым. Таким образом, следует моделировать тенденцию ряда динамики с помощью кусочно-линейной модели. Если же расчетное значение меньше критического, то нельзя отклонять нуль-гипотезу без риска сделать неверный вывод. В этом случае следует использовать единое для всей совокупности уравнение регрессии как наиболее достоверное и минимизирующее вероятность ошибки.

6. Проверка остаточных величин на автокорреляцию

7.

Способы исключения автокорреляции

Заключение

При изучении развития явления во времени часто возникает необходимость оценить степень взаимосвязи в изменениях уровней нескольких рядов динамики.
Применение методов классической теории корреляции (рассмотренных в предыдущих вопросах темы) связано с определенными особенностями:
1) в рядах динамики зачастую наблюдается зависимость между последующими и предшествующими уровнями. Наличие такой связи в статистической литературе называют автокорреляцией. При изучении взаимосвязи между рядами динамики с применением методов корреляционно-регрессионного анализа автокорреляция должна быть исключена из каждого из сравниваемых рядов динамики;
2) в изменении уровней нескольких рядов динамики, как правило, существует лаг, т.е. смещение во времени по сравнению с изменением уровней другого ряда динамики. Для получения более правильной оценки степени тесноты корреляционной связи также необходимо исключить этот лаг, т.е. нужно сдвинуть уровни одного ряда относительно другого на некоторый промежуток времени;
3) условия формирования уровней рассматриваемых рядов, как правило, изменяются. Эти изменения могут быть и существенными. Соответственно может изменяться во времени и степень тесноты связи. В этих условиях речь идет о переменной корреляции.
Таким образом, при анализе корреляционной связи между рядами динамики необходимо: 1) измерить связь между предыдущими и последующими уровнями; 2) с учетом указанных выше особенностей изучить связь между рядами динамики.
Первая задача решается по каждому ряду динамики: в качестве факторного признака рассматриваются фактические уровни ряда, а уровни этого же ряда со сдвигом на один период принимаются в качестве результативного признака. Исчисляются коэффициенты автокорреляции и авторегрессии. При этом коэффициент автокорреляции рассчитывается на основе формулы коэффициента линейной (парной) корреляции.
Если результаты расчета коэффициентов автокорреляции будут указывать на наличие автокорреляции уровней исходных рядов динамики, то для дальнейшего анализа корреляционной связи между рядами динамики нужно исключить эту автокорреляцию.
Имеется несколько способов исключения автокорреляции. Первый способ состоит в исключении от фактических уровней тренда (т.е. «выравненного» ряда). По каждому показателю времени находится отклонение фактического уровня от расчетного (сглаженного, выравненного). Т.е. коррелируют отклонения. Как показатель тесноты связи между изучаемыми рядами динамики используется коэффициент корреляции отклонений.

Список использованной литературы:

1. Общая теория статистики: Учебник/ Под ред. И. И. Елисеевой. – 5-е изд., перераб. и доп. – М.: Финансы и статистика, 2004. – 656 с.: ил.

2. Статистика: Гусаров В.М., Учеб. пособие для вузов. — М.: ЮНИТИ-ДАНА,
2003. - 463 с.

3. 3. Свободная энциклопедия W ikipedia http://ru.wikipedia.org

4. 4. Эрудиция – российская электронная энциклопедия, лекции по статистике http://www.erudition.ru

5. 5. Tarefer – лекции: курс лекций по статистике http://works.tarefer.ru