Капнометр помогает определить правильность положения интубационной трубки сразу после интубации трахеи. При интубации трахеи капнометр покажет колебания уровня СО2 в выдыхаемом воздухе, при интубации пищевода таких колебаний не будет.
Только капнометр и его показания дают возможность выбрать адекватный объём минутной вентиляции лекгих при ИВЛ. Прибор в данной ситуации играет роль дыхательного центра. При подборе необходимого уровня вентиляции легких нужно учитывать определенную иннерционность показаний FetCO2. Изменения МОД сказываются на концентрации углекислоты в выдыхаемом воздухе через несколько дыхательных циклов, иногда через 1-2 мин.
Само по себе определение разницы между FaCO2 и FetCO2 дает определенную информацию о состоянии легких пациента, об эффективности внешнего дыхания. Если эта разница не выходит за пределы 2-5 мм.рт.ст. (0,3-0,6% концентрации), можно говорить о хорошем состоянии дыхательного аппарата и оптимальном соотношении ФОЕ/ДО. Однако, эта разница может составить и 12-15 мм.рт.с. (1,7-2,1% концентрации) и тогда есть основание заподозрить легочную патологию рестриктивного характера. В этой ситуации показано изменить соотношение ФОЕ/ДО в сторону увеличения ДО.
На протяжении наркоза и операции приходится несколько раз менять режим вентиляции легких для поддержания стабильного уровня FetCO2. К концу операции, как правило, минутный объём вентиляции может быть снижен, возможно из-за снижения уровня обмена на фоне наркоза.
Отсутствие капнометрии во время наркоза и длительной ИВЛ в большинстве случаев приводит к выраженной гипервентиляции и гипокапнии. Происходит это из-за стремления анестезиологов обеспечить достаточную оксигенацию больных и для этого выбирающих режим так называемой “умеренной гипервентиляции”. Именно такая гипервентиляция и приводит к гипокапнии. Последняя совсем не безразлична для больных и относиться к ней спокойно анестезиологу нельзя. Нельзя потому, что снижение РаСО2 до 25-27 мм.рт.ст. ( около 3% FetCO2) приводит к уменьшению мозгового кровотока (в связи с сужением просвета мозговых сосудов) в два раза. Происходит соответствующее снижение кровотока и в сердце, в почках,а затем и в периферических тканях. Если при этом иметь ввиду правило Бора, согласно которому гипокапния и дыхательный алкалоз затрудняют диссоциацию оксигемоглобина, то создаются все условия для гипоксии мозга, связанной с гипервентиляцией. При углублении дыхательного алкалоза не искючено развитие гипоксической энцефалопатии. Все зависит от степени гипокапнии, однако, в любом случае она не улучшает кислородного снабжения мозга и при прочих равных условиях увеличивает вероятность неврологических нарушений. Гипервентиляция приводит и к отключению дыхательного центра и мозг лишается своего стимулятора,активизирующего работу нервных структур мозга, что затрудняет и удлиняет переход больного от наркозного угнетения к бодрствованию.
Таким образом, информация о FetCO2 носит не формальный характер, а является непременным условием для адекватного ведения анестезиологического обеспечения больных. Данные FetCO2 дают возможность анестезиологу спокойно, без риска для больного переводить его на самостоятельное дыхание после ИВЛ. Если во время операции ИВЛ проводится в режиме нормовентиляции, восстановление спонтанного дыхания проходит быстро, без длительного периода вспомогательного дыхания. У анестезиолога в таких случаях нет нужды выяснять причину длительного апноэ. С другой стороны, при длительной гипервентиляции и даже умеренной гипокапнии для перевода больного на самостоятельное дыхание приходится создавать уровень FetCO2, превышающий нормальный на 1-3%. Только тогда дыхательный центр “просыпается”, а вместе с ним, как правило, ”просыпаются” и другие отделы мозга. Восстановление активности дыхательного центра и спонтанного дыхания быстро снижает уровень FetCO2 до нормального.
Адекватность восстановленного самостоятельного дыхания можно оценить по объёму вентиляции и газообмену. Если у больного FetCO2 в пределах 4 - 5%, а по волюметру дыхательный объём составляет не менее 350 - 400 мл., можо говорить, что дыхание по объёму вентиляции достаточно и если при этом имеют место признаки гипоксемии (по данным пульсоксиметра), то причину этой гипоксемии нужно искать в нарушениях вентиляционно-перфузионных отношений. Иными словами , данные капнометра и волюметра позволяют дифференцировать вентиляционную и паренхиматозную дыхательную недостаточность.
После того, как при самостоятельном дыхании воздухом (без обогащения кислородом) капнометр будет стабильно показывать FetCO2 в пределах 4-5%, а пульсоксиметр - 93-95% НbО2 больной может быть переведен в клиническое отделение, поскольку сознание пациента к этому времени восстанавливается.
Диагностическое значение совместного применения
пульсоксиметра и капнометра.
Несколько типичных ситуаций в анестезиологии:
1.Гипоксемия со снижением показаний пульсоксиметра, гиперкапния.
Такое сочетание возможно только в связи с тотальной вентиляционной недостаточностью. Необходимо убедиться в адекватности дыхательного и минутного объёма вентиляции. Проверить объём подаваемого кислорода, удостовериться в отсутствиии негерметичности дыхательного контура, обратить внимание на показания манометра (наличие давления говорит о герметичности контура). Возможны перегибы интубационной трубки. Нужно исключить увеличение сопротивления вдоху и выдоху (разрушение бактериального фильтра, салфетка в контуре выдоха, препятствие сбросу излишков газовой смеси). Наконец, причиной вентиляционной недостаточности во время наркоза могут быть неполадки в работе респиратора, упомянутые выше.
Если выяснение причин вентиляционной недостаточности затягивается, необходимо перейти на ручную вентиляцию, а если и это не помогает, прибегнуть к мешку “Амбу” и смене наркозного аппарата.
2.Гипоксемия со снижением показаний пульсоксиметра и нормо или гипокапния.
В этой ситуации прежде всего нужно исключить снижение FiO2 в газовой смеси, подаваемой больному. Следует уменьшить концентрацию закиси азота или перейти на чистый кислород. Если эти маневры не помогают, нужно исключить все причины паренхиматозной дыхательной недостаточности(локальная гиповентиляция и увеличение альвеолярного мертвого пространства), которая описана выше.
По степени коррекции гипоксемии после увеличения FiO2 можно судить о выраженности вентиляционно-перфузионных нарушений, чаще всего обусловленных локальной гиповентиляцией. Если снижение НbО2 по пульсоксиметру значительно, а коррекция гипоксемии при увеличении FiO2 до 100% выражена незначительно - можно говорить о большом объёме шунтирования и локальной гиповентиляции. Если же снижение НbО2 не выходило за пределы 85-87% и гипоксемия купировалась сразу после повышения FiO2 во вдыхаемой смеси - причина гипоксемии относительно небольшой объём отключенного из вентиляции отдела легкого, либо имеет место шунтирование в связи с увеличением объёма экспираторного закрытия. В любом случае необходимо аускультативно проверить правильность стояния интубационной трубки и попытаться устранить локальную гиповентиляцию и гипоксемию.
Обращаем внимание на нормо или гипокапнию. Этот стимптом сразу исключает тотальную гиповентиляцию, как причину гипоксемии и приводит к выводу о наличии паренхиматозной дыхательной недостаточности.
3.Быстро наступающая гипоксемия без гиперкапнии,при отсутствии физикальных симптомов локальной гиповентиляции.
Такая ситуация может развиться при внезапном увеличении альвеолярного мертвого пространства при тромбэмболии ветвей легочной артерии или развитии легочного дистресс синдрома. Гипоксемия может быть обусловлена и сердечной недостаточностью со снижением кровотока в малом круге кровообращения. В последнем случае, как правило, наряду с гипоксемией имеются и другие признаки малого сердечного выброса, причина которого и определяет терапевтические мероприятия.
При увеличении альвеолярного мертвого пространства повышение FiO2 обычно не дает стойкой коррекции гипоксемии. Не коррегируется эта гипоксемия и другими средствами (изменение режима ИВЛ с повышением давления в фазе выдоха, удлинением фазы вдоха и др.). Коррекция (хотя бы частичная) гипоксемии может быть достигнута с помощью высокочастотной ИВЛ (инжекционной или осцилляторной). В этом смысле может оказаться полезным перевод больного на дыхание с помощью респиратора “Фаза-5” либо “Спирон - 201”, где имеется компонент высокочастотных осцилляций.
4.Снижение величины НbО2 на дисплее пульсоксиметра, периодически сменяющиеся нормальными цифрами насыщения или полным “молчанием” прибора на фоне малой амплитуды пульсовой волны на ФПГ. Эта “гипоксемия” вероятнее всего связана с артефактом из-за нарушения кровоснабжения пальца кисти. Необходимо переставить датчик пульсоксиметра на другой палец и лечить больного, воздействуя на причину вазоспазма на периферии - гиповолемия, неутоленная боль, эмоциональное возбуждение, гипервентиляция и гипокапния, снижение температуры тела.
Исследование концентрации кислорода во вдыхаемой смеси.
Отечественные респираторы и наркозные аппараты до сих пор не комплектовались анализаторами кислорода. Очевидно, что роль этого прибора в обеспечении безопасности больного при ИВЛ явно недооценивается. Доказательством тому является не только наличие анализаторов во многих моделях зарубежных наркозных аппаратов, но и целый перечень причин снижения концентрации О2 в дыхательной магистрали.
Наиболее вероятной и частой причиной создания гипоксической смеси служит снижение (или прекращение) подачи кислорода к наркозному аппарату. В аппаратах, не снабженных системой автоблокировки N2O при критическом снижении потока кислорода, это может привести к трагическим последствиям, которые могут быть предотвращены сигналом тревоги анализатора кислорода. То же произойдет и при случайном увеличении потока N2O, что вполне вероятно при неполадках в редукторе балона с закисью азота. Хорошо известны трагические исходы при случайной замене балона с О2 на балон с СО2. И в этих случаях анализатор кислорода мог бы предотвратить несчастье, во-время оповестив об отсутствии кислорода в смеси.