Смекни!
smekni.com

Капнометрия (стр. 3 из 4)

Выраженная одышка и снижение FetСО2 чаще всего случаются при обтурации бронхов, снижении (или прекращении) вентиляции участков легких с шунтированием части кровотока.

Снижение FetСО2 при падении АД, учащении пульса, одышке - показывает неадекватный транспорт СО2 системой кровообращения,т.е. обнаруживает сердечно-сосудистую недостаточность

Эти сведения могут с успехом использоваться в терапии, особенно в кардиореанимации.

При выборе режима ИВЛ во время наркоза или в отделении ранимации клинические тесты не дают достоверной информации о правильности такого выбора. Если гипоксемию можно обнаружить клинически (хотя и с большим опозданием), то небольшие степени гипер и гипокапнии без лабораторных исследований не определяются. Тем более трудно на основании клинических признаков организовать профилактику нарушений обмена СО2. Важную роль в объективизации сдвигов газообмена играет измерение параметров КЩС. Однако, сведения о РаО2 и РаСО2 могут быть получены лишь периодически (и то не во всех больницах), а изменение уровня РаСО2 может произойти в любой момент. Кроме того, обнаруженные по анализу крови сдвиги требуют коррекции режима ИВЛ с последующим контролем правильности такой коррекции. Иначе говоря, КЩС не является достаточно мобильным “гидом” в выборе необходимых изменений режима ИВЛ. Капнометр дает постоянную информацию о FetСО2, а следовательно и о РаСО2 и позволяет по многу раз в течение операции или проведения длительной ИВЛ в отделении реанимации, корригировать режим ИВЛ.

Здесь необходимо сделать небольшое отступление. Дело в том, что имеется определенная разница в величинах РаСО2 и РetСО2 (та же концентрация в конце выдоха, выраженная в единицах парциального давления СО2 ), связанная с величиной дыхательного объема, с её отношением к функциональной остаточной ёмкости (объем газа остающийся в легких после обычного выдоха, сумма остаточного и резервного воздуха), с величиной физиологического мертвого пространства, с сопротивлением дыхательных путей. Поэтому в литературе давно ведется и пока не прекращается спор о возможности по РetСО2 (или FetСО2) ориентироваться в динамике РаСО2. Большинство авторов приходят к выводу, что величина разницы между РаСО2 и РetСО2 достаточно стабильна для данного больного и не меняется в процессе операции и ИВЛ (Nunn,Hill -60, Takkis a.oth.-72, Whitesell a.oth.-81). Таким образом, если измерить РаСО2 (КЩС) и РetСО2 (капнометром) до операции или в начале операции, то дальнейшее определение РаСО2 не составит труда: РаСО2актуальн.= РetСО2акт.+ (РаСО2исх. - РetСО2исх.). То есть к величине РetСО2 данного момента нужно прибавить разницу РаСО2 - РetСО2, измеренную до операции. Эта разница вариирует от больного к больному в значительных пределах: от 2-3 до 12-13 мм.рт.ст., но она достаточно стабильна для данного больного во времени. Если в лечебном учреждении есть капнометр, но нет аппаратуры для определения КЩС, можно выйти из положения следующим образом: нужно измерить FetСО2 до операции и проведения ИВЛ, а во время операции придерживаться исходного уровня концентрации углекислоты в конце выдоха. Мы исходим из того, что гипоксемии при таком режиме не может быть, поскольку вдыхаемая больным газовая смесь содержит больше кислорода, чем воздух. Кроме того, предоперационное напряжение, как правило, сопровождается усилением дыхательной активности и снижением FetСО2. Поэтому, если мы станем придерживаться исходной величины FetСО2 во время наркоза, то ИВЛ будет проводится в режиме небольшой гипервентиляции. В этом мы убеждаемся каждый день у операционного стола: при переводе больных после ИВЛ на самостоятельное дыхание приходится “накапливать” СО2, снижая минутную вентиляцию легких.

Возвращаясь к вопросу о соотношении концентрации углекислоты в артериальной крови и в конце выдоха, должны заметить, что не все наблюдали стабильность разницы этих величин при динамическом наблюдении (Hofman a.oth.-89). Эти авторы считают, что стабильность нарушается при увеличении объёма альвеолярного мертвого пространства, при нарушении работы системы кровообращения (шок). Повидимому, к наблюдениям этих авторов нужно прислушаться и при различных нарушениях гомеостаза у больных чаще сопоставлять РаСО2 и РetСО2, чтобы последняя величина оставалась информативной.

Итак, при выборе режима ИВЛ анестезиолог-реаниматолог может опираться на показания капнометра. Практика показывает, что без такой информации в большинстве случаев режим искусственной вентиляции легких устанавливается таким образом, что у больного развивается более или менее выраженная гипокапния и газовый алкалоз. Можно сказать, что такой режим устанавливается чисто рефлекторно, главным образом в честь профилактики главной опасности - гипоксемии. Результаты гипервентиляции описаны в предыдущем разделе. Примечательно, и это отмечают многие авторы (Буров - 63, Nunn - 58), что даже опытные анестезиологи и даже в присутствии информации о FetСО2, склонны к режиму ИВЛ с гипервентиляцией. И это понятно, многие годы в анестезиологии культивируется мнение о безопасности гипервентиляции (Geddas,Gray -59). Успел созреть устойчивый стереотип в мышлении врачей, который может быть устранен только после длительного использования во время наркоза капнометрии. Это имеет смысл сделать, хотя бы для быстрого перевода больных на самостоятельное дыхание после окончания ИВЛ.

Капнометрический контроль во время ИВЛ имеет смысл не только для профилактики дыхательного алкалоза, но и для предотвращения гиповентиляции. Такое осложнение встречается реже, но вовсе не исключено у больных с тяжелыми воспалительными и другими осложнениями хирургического вмешательства или развитии первичной патологии (кишечной непроходимости, перитонита и пр.). У таких больных потребность в минутной вентиляции легких может достигать 15-18 и даже 20 л в мин. При стандартном режиме в 10-12 л в мин. мы получим дыхательный ацидоз и возможную гипоксемию со всеми вытекающими отсюда последствиями.

Еще до выбора режима вентиляции легких капнометр может быть полезен для подтверждения правильности стояния интубационной трубки. При введении трубки в пищевод капнометр не покажет нарастания FetСО2 во время выдоха. Два-три “дыхательных” движения достаточны для установления этого факта (Higgins a.oth.-88). Можно спорить о целесообразности такого теста и о том, может ли он конкурировать с обычным прослушиванием легких, зато как показатель качества натронной извести в абсорбере и вообще работы абсорбера данные капнометра незаменимы. Он дает быструю и достаточную информацию о: низком качестве натронной извести,ее отсутствии в абсорбере, отключении абсорбера, о других неполадках в абсорбере. Все эти неполадки будут сопровождаться подъемом концентрации СО2 во вдыхаемом воздухе. Именно поэтому мы считаем важным включать в программу тревожной сигнализации капнометра превышение концентрации СО2 во вдыхаемой смеси за пределы 0,5%. Поскольку нет четких клинических признаков увеличения концентрации СО2 на вдохе, такое нарушение состава вдыхаемой газовой смеси рискует быть во-время не замеченным и привести к гиперкапнии.

Капнометр оказывается полезным и в диагностике других неполадок в наркозных аппаратах и респираторах. В частности капнометр помогает определить точность срабатывания клапана вдоха. Если он работает нечетко имеет место заброс части выдоха в шланг вдоха.”Прощупывая” заборником капнометра шланг вдоха от адаптера к клапану вдоха можно установить примерный объем заброса по длине участка шланга, где имеется нарастание FCO2 на выдохе.

Капнометр используется и как простеший монитор дыхательных движений. При перегибах интубационной трубки, разгерметизации магистрали, неисправности респиратора и т.д. капнометр подаст сигнал остановки дыхания.

Для многих больных достаточно типична эволюция периферического кровообращения в течение длительной операции и обезболивания. В первые 10-30 мин. имеет место некоторая гиперемия лица и конечностей с подъемом температуры кисти и увеличением амплитуды пульсовой кривой на фотоплетизмограмме (ФПГ). Далее происходит постепенное посветление кожи кисти и лица, снижение амплитуды пульсовой кривой, снижение периферической температуры. Можно предположить несколько причин такой эволюции:

1. Гиповолемия и централизация кровообращения.

2. Снижение температуры тела при постепенном охлаждении больного.

3. Недостаточная аналгезия и спазм периферических сосудов.