Смекни!
smekni.com

Капнометрия (стр. 4 из 4)

При исключении влияния перечисленных факторов, побледнение, а в дальнейшем некоторая синюшность конечностей и снижение их температуры оставались бы мало понятными, если бы не вероятная гипокапния при гипервентиляции. Исключить или признать влияние на периферическое кровообращение этого фактора можно с помощью капнометра или измерения РаСО2. Практика показывает, что достаточно большое количество больных с побледнением и цианозом конечностей обязаны его развитию газовому алкалозу и гипокапнии. Профилактика и лечение такой патологии состоит в выборе адекватного режима вентиляции, нормализации РаСО2 под контролем газового анализа (крови или выдыхаемого воздуха).

Актуально применение капнометра в течение ответственного периода перевода больных на самостоятельное дыхание после более или менее длительного периода ИВЛ. Хорошо известно, что продленное апноэ может быть связано с:

1. Недостаточной декураризацией,

2. угнетением дыхательного центра наркотическими аналгетиками,

3. гипокапнией при гипервентиляции.

Без объективной информации поставить правильный диагноз бывает достаточно трудно. Дело значительно упрощается при использовании капнометра. Во-первых,динамическая капнометрия по ходу обезболивания в значительной степени предотвращает выраженную гипокапнию. Во-вторых, капнометр позволяет выяснить причину апноэ. Если повышение FetСО2 до 6-7% (а иногда и 8%) не приводит к восстановлению самостоятельных дыхательных движений, нужно думать о передозировке аналгетиков или об остаточном действии релаксантов. Чаще всего при повышении концентрации СО2 в конце выдоха до указанных цифр начинаются активные дыхательные движения больного.

При выведении больных из гипокапнии перед врачем-анестезиологом возникают два вопроса: 1. каким способом восстанавливать нормальный уровень углекислоты в крови? и 2. почему для восстановления самостоятельного дыхания нужно заметно превысить нормальный уровень FetСО2?

Имеются по крайней мере три способа повышения концентрации СО2 в крови и выдыхаемом воздухе. Некоторые авторы рекомендуют использовать для этого дыхательную смесь с 5-6% СО2. Эффект получается быстрый и надежный. Недостатком метода является необходимость иметь в арсенале анестезиологических средств указанную смесь. Второй способ проще и не менее эффективен. Состоит он в отключении абсорбера, что приводит к быстрому ( в течение нескольких минут) накоплению необходимого количества СО2. Такой метод просто реализовать при работе на моделях наркозных аппаратов, имеющих механизм отключения абсорбера. Третий метод самый простой, он не требует никаких специальных дыхательных смесей и устройств. Он хорошо знаком всем анестезиологам и состоит в снижении минутной вентиляции легких (лучше под контролем капнометра). Гипоксемия при дыхании обогащенной кислородом дыхательной смесью больному не грозит даже в случаях длительного апноэ (10-20 сек). Конечно, спокойнее продолжать вентиляцию легких в обычном режиме при отключенном абсорбере, но и третий метод вполне безопасен, особенно при контроле FetСО2 и НвО2 (пульсоксиметром).

Второй вопрос о необходимости высокого уровня СО2 для восстановления работы дыхательного центра. Этот факт отмечают многие авторы и наблюдает каждый анестезиолог, использующий при работе капнометр. Объяснение обсуждаемого феномена, на наш взгляд, возможно только одно. Гипервентиляция и гипокапния, как уже отмечалось, приводят к уменьшению мозгового кровотока с более или менее выраженной гипоксией мозга. Именно это обстоятельство снижает дееспособность и чувствительность дыхательного центра к СО2. Поэтому его работа может быть стимулирована повышенной по сравнению с нормой концентрацией СО2 в крови. Очень скоро, в течение минут после подъема FetСО2, кровоток в сосудах мозга нормализуется, признаки гипоксии купируются и дыхательный центр “настраивается” на нормальный уровень СО2 в крови.

Из сказанного можно сделать важный практический вывод: не нужно бояться относительно небольшого и кратковременного повышения FetСО2, необходимого для восстановления нормальной работы дыхательного центра и адекватного самостоятельного дыхания.

После восстановления самостоятельного дыхания нужно выяснить его достаточность для газообмена. Это легко сделать по показаниям капнометра. Если FetСО2 установилось в пределах 4-5,5% можно говорить, что вентиляционной недостаточности нет и решать вопрос об экстубации и продленной ингаляции смесью, обогащенной кислородом на основании показаний пульсоксиметра.

Желательно и после экстубации убедится в стабильности уровня FetСО2 и лишь тогда можно считать, что декураризация состоялась и угнетения дыхательного центра нет.

Перевод больного в отделение реанимации не снимает надобности в капнометрическом контроле. Этот контроль поможет вовремя диагностировать развившуюся вентиляционную дыхательную недостаточность, выявить и устранить ее причину. Капнометрия позволяет диагностировать и паренхиматозную дыхательную недостаточность по гипервентиляции и снижению FetСО2. Таким образом, можно предположить гипоксемию, связанную с обтурацией бронха и шунтированием части легочного кровотока.

Сфера использования капнометра в отделениях реанимации и анестезиологии во многом сходна. Однако есть и специфические реанимационные задачи, решаемые с помощью капнометра.

В последние годы появляется все больше сообщений о применении капнометрии во время проведения реанимационных мероприятий в связи с остановкой сердца. Как и следовало ожидать, величина FetСО2 при ИВЛ и массаже сердца будет пропорциональна эффективности кровотока. Некоторые авторы (Weil a/oth.-90, Callahan-90) уверены, что эта величина может служить прогностическим признаком успеха реанимации. По мнению Cаllahan FetСО2 выше 15 тор. означает, что реанимация будет успешной, если ниже - успех сомнителен. Не все анестезиологи согласны с тем, что такая четкая закономерность существует и что возможен такой прогноз (Gruder a.oth.-88). Но никто не сомневается в том, что резкое увеличение FetСО2 во время массажа сердца означает начало самостоятельных сердечных сокращений. Таким образом, капнометр играет роль самого простого и надежного монитора (Garnett a.oth.-87 ). Это особенно важно во время реанимации, когда нет времени и лишних рук для наложения электродов мониторирующих устройств. Капнометр начинает давать показания после того, как трубка для забора газа вводится в рот больного или присоединяется к адаптеру респиратора. Здесь нужно сделать одно примечание: резкое повышение FetСО2 во время реанимации может произойти и после внутривенного введения бикарбоната натрия. Это нужно иметь ввиду и отличать это повышение концентрации СО2 от повышения, связанного с началом самостоятельных сердечных сокарщений.

Кроме описанных, чисто мониторных задач, капнометр может решать и задачи, связанные с функциональной диагностикой. В частности, с его помощью, как уже говорилось, можно проводить измерение объема мертвого пространства и объема альвеолярной вентиляции. Капнограф может быть использован и для измерения минутного сердечного выброса. Анализ капнограмм дает значительную нформацию о состоянии легких и дыхательных путей. По крутизне и длительности подъёма кривой судят о сопротивлении дыхательных путей на выдохе, наличие и длительность плато кривой капнограммы дает возможность судить о величине различия РаСО2 и РetСО2..

Все вышеизложенное не исчерпывает информационных возможностей капнометрии и капнографии, но и перечисленного, как нам представляется, достаточно, чтобы оценить большой объем полезной информации этого метода. Можно с уверенностью сказать, что исследование концентрации углекислоты в выдыхаемом воздухе не имеет “конкурентов” по информативности. Кроме того, методика отличается простотой выполнения и относительно небольшой стоимостью оборудования. Неслучаен все возрастающий интерес к ней, как практических врачей, так и научных сотрудников. Мы надеемся, что этот интерес и даст необходимый импульс для разработки и серийного выпуска отечественных быстродействующих анализаторов СО2 в выдыхаемом воздухе.