Человек живет в постоянном контакте с внешней средой, получая информацию об окружающем мире с помощью специализированных сенсорных систем, воспринимающих механические, термические, акустические, электромагнитные (световые) и химические сигналы. Благодаря работе этих систем мы можем, например, любоваться светом звезд, наслаждаться пением птиц, ароматом цветов и т.д. Однако всем наверняка приходилось испытывать и другое, вовсе неприятное, ощущение — боль, возникающую в результате какого-либо вредного для организма воздействия. Ответственна за это так называемая ноцицептивная система (от лат. noсeo — вредить). И хотя боль дает мало сведений об окружающем нас мире, тем не менее она столь же необходима человеку для нормальной жизни, как осязание или обоняние, так как предостерегает о внешних или внутренних опасностях, грозящих нашему телу. Несмотря на то, что боль во многом сравнима с другими чувствами, она все же обладает характерными особенностями. Чтобы помочь страдающему от боли человеку, надо хорошо понимать ее специфические черты.
В отличие от избирательных сенсорных систем для ноцицепции не существует специализированного болевого стимула (боль возникает при ушибе, ожоге, укусе пчелы, и т. д.). Нет и особого, анатомически выделенного органа, подобного, например, органу слуха или зрения. Наконец, болевое ощущение может быть вызвано на любом участке тела, соответственно в организме нет каких-либо специфических болевых нервов, подобных зрительному или обонятельному. Это — своеобразная аварийная сигнализация живого организма, которая включается в критической ситуации. И организм (еще до того как мы осознаем случившееся и примем решение) немедленно реагирует — срабатывает защитный рефлекс, выражающийся в многокомпонентной оборонительной реакции. Достаточно вспомнить, как человек отдергивает обожженную руку или меняет позу при боли в позвоночнике (моторный компонент), что нередко сопровождается криком или агрессией (поведенческий компонент). При этом обычно изменяются кровяное давление и ритм дыхания, учащается пульс, расширяются зрачки (реакции вегетативной нервной системы) и т.д.
Путь болевого сигнала в живом организме. |
Таким образом, живой организм может распознать внешние воздействия (стимулы), способные причинить ему вред. Порог обнаружения таких воздействий весьма близок к той силе стимула, при которой действительно происходит повреждение ткани, на что впервые обратил внимание знаменитый английский физиолог Ч.С.Шеррингтон [1]. Казалось бы, любые вредящие стимулы должны вызывать защитный рефлекс, но, к сожалению, наш организм еще недостаточно совершенен. Существуют вредные воздействия, которые не выявляются нервной системой (например, радиация), а некоторые безвредные стимулы (электрический ток или ультразвук умеренной интенсивности), напротив, вызывают боль. Учитывая это, в физиологии принято называть ноцицептивными только те стимулы, которые вызывают защитный рефлекс. Защитный рефлекс, ноцицептивная система и вредящие стимулы — ключевые понятия теории боли.
Ноцицептивная система оказалась существенно сложнее для изучения, чем избирательные сенсорные системы. Отсутствие специфического болевого стимула, специальных болевых нервов и специализированного органа болевой чувствительности объясняет значительное отставание в исследовании механизмов работы этой системы по сравнению с другими. Раскрытие основных принципов и структурных элементов ноцицептивной системы — итог более чем столетних исследований. Оказалось, что в восприятии и обработке информации о вредящих воздействиях участвуют различные отделы нервной системы — от первичных сенсорных нейронов до определенных структур головного мозга. Мы рассмотрим только начальное, периферическое звено ноцицептивной системы, но сначала еще несколько слов о терминах и основных понятиях.
Ноцицептивные сигналы возникают в окончаниях первичных сенсорных нейронов и поступают в спинной мозг сначала по периферической, а затем центральной ветвям их аксонов. Теоретически биполярная структура первичного сенсорного нейрона допускает преобразование импульсных последовательностей на этом пути. Учитывая это, физиологи ввели понятие “сенсорная единица” (специфический рецептор в избирательной сенсорной системе и ноцицептор — в ноцицептивной), которое объединяет периферическую ветвь аксона первичного сенсорного нейрона (афферентное волокно), ее тканевое окончание (терминаль) и возможные претерминальные клетки-сателлиты, функционально связанные с терминалью. Сенсорную единицу можно представить как некий функциональный модуль, для которого входной сигнал — внешний стимул, а выходной — последовательность нервных импульсов в периферической ветви аксона первичного сенсорного нейрона.
Периферическая ноциология начала развиваться в XIX в., когда уровень техники был еще недостаточен для решения ее задач. В 1838 г. немецкий физиолог И.П.Мюллер предположил, что каждому ощущению, включая боль, соответствуют определенные специфические нервные волокна (в современных терминах — первичные сенсорные нейроны и ноцицепторы). В конце XIX в. гистолог М.Бликс обнаружил специализированные точки кожи для определенных видов стимулов, физиолог М.Фрей установил различную чувствительность малых участков кожи к точечным механическим стимулам [2, 3]. Эти работы привели к представлению о сенсорной гетерогенности кожи и послужили основой для формулирования теории специфичности боли. Согласно этой теории, существуют специализированные кожные нервные волокна, чувствительные окончания (ноцицепторы) которых возбуждаются только вредящими стимулами.
В XIX в. появилась и другая, альтернативная, теория боли — теория интенсивности, согласно которой защитный рефлекс и боль возникают при чрезмерном раздражении любого нерва. Сформулировал ее в 1895 г. немецкий врач А.Гольдшайдер, заметивший, что при некоторых заболеваниях происходит пространственное и временнOе суммирование ноцицептивных стимулов [4]. Теория интенсивности предполагает, что все сенсорные единицы выполняют двойную роль как специфических рецепторов (например, тепловых), так и ноцицепторов.
В XX в. обе конкурирующие теории были экспериментально проверены с помощью развитых к тому времени гистологических методов и новых электронных приборов. Английские гистологи школы Г.Уэдделла не выявили связи между структурой и функцией нервных окончаний кожи человека [5]. Оказалось, что все разнообразие кожных ощущений передается нервными окончаниями всего двух типов — инкапсулированными и свободными. Диссонанс между гаммой кожных ощущений и скудным набором структурных типов сенсорных терминалей особо заметен в волосистой коже, где инкапсулированных терминалей почти нет. Гистологи заметили и другой важный факт: большинство микроскопических участков кожи снабжено свободными нервными окончаниями различных аксонов. Это означает, что даже строго локализованный стимул одновременно возбуждает различные сенсорные единицы.
Результаты гистологических исследований послужили основанием как для критики теории специфичности, так и для развития теории интенсивности, что привело к созданию теории паттерна (нейроимпульсного узора) Дж.Нейфа [6]. Согласно этой теории, ноцицептивному (как и любому другому) стимулу соответствуют определенные импульсные последовательности (паттерны) в группах нервных волокон. Как и теория интенсивности, теория паттерна не предполагает существования специализированных ноцицепторов для распознавания повреждающих стимулов. Считается, что одно и то же волокно выступает в разных ипостасях, внося вклад в суммарный импульсный узор, приводящий к тому или иному ощущению.
К сожалению, структурную однородность нервных окончаний гистологи без каких-либо оснований распространили и на их функциональную однотипность, поэтому критика теории специфичности оказалась некорректной. В действительности же внешне одинаковые нервные окончания могут резко отличаться по реакции на различные воздействия. Однако выяснилось это, лишь когда удалось зарегистрировать сигналы в нервных волокнах.
Типичная запись разрядов кожного ноцицептора (а) кошки при линейно-нарастающем нагреве (б), полученная в наших опытах [15]. Кривая (в) показывает среднюю частоту разрядов и отражает характерные особенности ноцицептивных сигналов индивидуальных С-ноцицепторов, которые представляют собой ограниченную последовательность из нескольких десятков нервных импульсов, следующих с частотой, не превышающей 20 Гц. |
Изобретение осциллографа совершило революцию в нейрофизиологии. В 1921 г. с его помощью американские исследователи, физиолог Г.Гассер и физик Г.Ньюкомер, впервые “увидели” нервные импульсы [7]. Оказалось, что нерв состоит из волокон, значительно (более чем в 100 раз) отличающихся по скорости проведения нервных импульсов. Наибольшую скорость проведения имели толстые миелиновые Аb-нервные волокна диаметром до 20 мкм, а самую малую — тонкие миелиновые Аd-волокна и безмиелиновые (безмякотные) С-волокна диаметром около 1 мкм. Применение осциллографа позволило зарегистрировать суммарные сигналы отдельных групп нервных волокон и выявить роль этих групп в передаче ноцицептивных сообщений.
В 1926 г. англичанин Э.Эдриан и швед Ю.Цоттерман впервые получили записи сигналов в одиночных толстых миелиновых афферентах скелетной мышцы кошки [8]. Был установлен принципиальный факт: “чрезмерное раздражение” Аb-афферентов кожи, вызывающее разряд импульсов с максимальной для этих волокон частотой, не стимулирует возникновение защитного рефлекса. Так на примере толстых миелиновых волокон была доказана несостоятельность теории интенсивности. Что касается тонких С-волокон, то, как оказалось, они играют особую роль в передаче ноцицептивных сигналов. Эдриан и Цоттерман выяснили, что импульсы в группе С-афферентов кожи возбуждаются при травмирующих механических, химических и температурных воздействиях [9, 10]. Д.Кларк, Дж.Хьюз и Г.Гассер установили, что при силе электрического стимула, достаточной для возбуждения С-афферентов, возникал защитный рефлекс, причем он развивался и при блокаде толстых миелиновых Аb-афферентов [11].