Смекни!
smekni.com

Лайнус Карл Полинг : Как жить долго и быть здоровым (стр. 5 из 7)

В 1958 г. Крик сформулировал этот принцип как "центральную догму" молекулярной генетики.

Однако вскоре после публикации модели в бой вступила неожиданная и свежая сила. Это был крупнейший физик-теоретик Г.А.Гамов (в английской транскрипции Дж.Эн. Геймов). В конце 20-х - начале 30-х годов Гамов был гордостью молодой советской теоретической физики. Его, выпускника и аспиранта Ленинградского университета, друга Л.Д.Ландау, послали за границу в Геттинген (Германия) к М.Борну, а затем в Копенгаген (Дания) к Н.Бору для научной стажировки. Там он выполнил ряд теоретических работ высочайшего класса и был признан одним из самых обещающих молодых физиков Европы. Интересно, что одна из его статей в 1930 г. была опубликована совместно с молодым немецким физиком-теоретиком Дельбрюком. А в 1932 г., когда Гамова не выпустили за границу, его доклад Сольвеевскому конгрессу представил его друг Дельбрюк.

В 1932 г. по представлению В.А.Вернадского и двух других академиков Гамова избрали член-корреспондентом АН СССР. Ему было 28 лет, его воспевали поэты:

"...советский парень Гамов<...>уже до атома добрался лиходей"

(Д.Бедный).

Но в 1933 г., выехав на очередной Сольвеевский конгресс, Гамов не дождался продления командировки и не вернулся, став невозвращенцем. За этот большой грех его отлучили от Академии наук, от Родины. И посмертно восстановили только в 1990 г.

Гамову принадлежали два крупнейших открытия: теория альфа-распада и космологическая теория "горячей Вселенной" - работы нобелевского уровня. Третьим своим основным достижением Гамов считал постановку проблемы генетического кода.

Вот как сам Гамов описывал этот момент: "Прочитав в "Nature" в мае 1953 г. статью Уотсона и Крика, которая объясняла, как наследственная информация хранится в молекулах ДНК в форме последовательности четырех видов простых атомных групп, известных как "основания" (аденин, гуанин, тимин и цитозин), я задался вопросом, как эта информация переводится в последовательность двадцати аминокислот, которые образуют молекулы протеина. Простая идея, которая пришла мне в голову, состояла в том, что можно получить 20 из 4 подсчетом числа всех возможных триплетов, образующихся из четырех различных сущностей. Возьмем, например, колоду игральных карт, в которой мы обращаем внимание только на масть карты. Сколько триплетов одного и того же вида можно получить? Четыре, конечно: трое червей, трое бубен, трое пик и трое треф. Сколько триплетов с двумя картами одной и той же масти и одной другой? Пусть мы имеем четыре выбора для третьей карты. Поэтому мы имеем 4x3 = 12 возможностей. В дополнение мы имеем четыре триплета со всеми тремя различными картами. Итак, 4+12+4=20, а это и есть точное число аминокислот, которое мы хотели получить".

Таким образом, Гамов первым сформулировал проблему генетического кода. Генетическая информация записана в полинуклеотидах в виде последовательности символов четырех типов: A, T, G и C. Затем она перекодируется в последовательность 20 типов (аминокислот). Кодирующие группы символов могут быть только триплетными. Правила соответствия триплетных групп нуклеотидных символов (в дальнейшем названных кодонами) и символов аминокислот образуют генетический код. Главная задача - расшифровать этот код, в том числе - объяснить происхождение числа 20, имея в наличии 64 триплета.

Чтобы понять такой поворот мысли, надо учесть некоторые обстоятельства.

Во-первых, Гамов сравнил последовательность нуклеотидов с длинным числом, записанным в четверичной системе счета. В шутку он назвал его "звериным числом", имея в виду религиозную легенду из "Апокалипсиса", где имя антихриста ("зверя из бездны") скрыто под неизвестным числом. Расшифровка "звериного числа" необходима для победы над зверем. Кроме того, 20 - число аминокислот - он назвал "магическим числом", предполагая, что объяснить его из внутренней структуры кода - это и значит решить проблему.

Первая статья Гамова и Томкинса была послана в "Proceedings of the National Academy of Sciences of the United States of America", и отвергнута редакцией, поскольку Томкинс - это мифический персонаж популярных книг Гамова, а не реальное лицо. Эта статья вышла в свет в 1954 г. в Докладах Датской академии наук в Копенгагене от имени одного Гамова.

Во-вторых, летом 1953 г. Уотсон и Крик составили стандартный список из 20 аминокислот, непосредственно участвующих в синтезе белков, а вторичные их производные исключили. Впоследствии этот список был канонизирован.

В-третьих, Гамов очень непринужденно использовал карточную терминологию. Чего стоят хотя бы такие пассажи: "Возьмем, например, колоду игральных карт..." или "Допустим, мы играем в "упрощенный покер..." и далее по тексту. Образ оказался очень точным. Действительно, имеем четыре масти - две черных с ножками (пурины) и две красных без ножек (пиримидины). Последовательность нуклеотидов можно представить в до боли знакомом виде.

Природа как бы играет с теоретиком в "упрощенный покер", игра азартная, а выигрыш - крупнейшее открытие XX века. Ясно, что души теоретиков дрогнули! Сбывались предсказания Шредингера! Интерес к проблеме стремительно достиг апогея. Начался оптимистический этап в изучении генетического кода.

В-четвертых, Гамов попытался использовать для решения проблемы генетического кода методы дешифровки шпионских кодов, в которых имел некоторый опыт. Вначале он предложил гипотезу о "перекрывающемся ромбическом коде", когда можно было проследить за определенными закономерностями в структуре известных полипептидов. В своей автобиографии Гамов писал: "...работа была столь же трудна, как расшифровка секретного военного кода на основе только двух коротких посланий, добытых шпионами. Так как в то время я (Гамов. - В.Р.) был консультантом в Военно-морском министерстве Соединенных Штатов в Вашингтоне, я пошел к адмиралу, под командованием которого находился, и спросил, можно ли поручить сверхсекретной криптографической группе расшифровку японского кода. В результате в моем отделе Университета им.Дж.Вашингтона появились три человека...

Я поставил перед ними задачу, и через несколько недель они сообщили мне, что она не имеет решения. То же заключение было получено моими друзьями-биологами: Мартинасом Ичасом, уроженцем Литвы, и Сиднеем Бреннером, уроженцем Южной Африки. Это исключило возможность перекрывающегося кода..."

В целом такая же судьба постигла и другие гипотезы. Гамов и Ичас предложили гипотезу "комбинаторного" кода, где все триплеты одинакового состава считались синонимами; 64 триплета образовали 20 групп (магическое число!); код был вырожден, триплеты в тексте не перекрывались. Очень похоже на правду! Но и этот код был забракован.

Крик, Гриффитс (племянник открывателя трансформации) и Л.Орджел предложили идею "кода без запятых", когда триплеты в тексте не отделены какими-либо знаками, но считываются единственным образом: кодирующие - 20 гетеротриплетов, а все их циклические перестановки (40) - некодирующие. Четыре гомотриплета в этом случае - тоже некодирующие. Этот вариант также не подтвердился, хотя сама проблема "кодов без запятых" исследуется математиками до сих пор.

В этом умственном состязании участвовали многие выдающиеся математики, физики, химики, инженеры, а также - научная молодежь. Однако, несмотря на остроумие многих предложений, все они оказались неверными.

"Природа хитра..." - заключил Гамов через 10 лет.

Оптимистический этап изучения генетического кода закончился. Наступило время экспериментального решения, которое в итоге оказалось очень успешным и совершенно иным. Имя Гамова почти исчезло из научной литературы по молекулярной биологии. В 1968 г. он умер.

Значение работ Гамова было очень точно сформулировано Криком: "Важность работы Гамова состояла в том, что это была действительно абстрактная теория кодирования, которая не была перегружена массой необязательных химических деталей..." Иначе говоря, это был информационно-кибернетический подход в чистом виде, который позднее полностью себя оправдал при разработке теории молекулярно-генетических систем управления и генетического языка.

Молекулярные основы жизни оказались в центре научных интересов Л. Полинга. Вместе со своими сотрудниками Л. Полинг, выполнил ряд блестящих исследований по структуре белка и установил, что заболевание серповидно-клеточной анемией связано с образованием в эритроцитах человека аномального гемоглобина. Серповидно-клеточная анемия была названа Л. Полингом "Молекулярной болезнью". По мнению исследователя, изменение структуры и функции макромолекул или недостаток физиологически активных молекул в организме могут служить причиной расстройства здоровья и ряда заболеваний человека. В связи с этим понятен интерес Л. Полинга к проблемам заместительной терапии, в частности к витаминотерапии, направленной на концепцию дефицита в организме соединений, обеспечивающих оптимальный уровень физиологических процессов. С полным основанием к числу важнейших активаторов жизненных процессов и средств, повышающих устойчивость организма к простудным и инфекционным заболеваниям, относит Полинг витамин С

Человек и другие мутанты

Передо мной аптечный пузырек с этикеткой: "Аскорбиновая кислота 0,05 г. Детям 1 шт., взрослым 2 - 3 шт. ". Сверяюсь с таблицами...

Чтобы жить дольше и чувствовать себя лучше, таких желтеньких таблеток нужно глотать не менее двадцати в день, а лучше сразу пятьдесят или сто.

Бред какой-то. Однако Лайнуса Полинга, одного из отцов современной биохимии, открывателя белковой альфа-спирали, я привыкла уважать. Как говорил К.С.Льюис, если человек, сделавший невероятное заявление, до этого был разумен и правдив, мы не имеем права сразу назвать его лжецом или дураком. Надо, по крайней мере, выслушать его аргументы.