Смекни!
smekni.com

Медицинская генетика (стр. 1 из 10)

Кировский физико-математический лицей

Реферат

по биологии

Медицинская генетика

Составил

Сухих Константин

10а класс

Проверила

Лусникова Н. А.

Киров, 1999


Введение.___________________________________________________________________ 3

§1. Генетика и этапы её развития.__________________________________________ 4

§2. Клонирование и генная инженерия._____________________________________ 10

§3. Причины генных мутаций.______________________________________________ 15

§4. Генетика пола.__________________________________________________________ 16

§4.1. Соотношение полов.____________________________________________________ 18

§4.2. Наследование, ограниченное и контролируемое полом.______________________ 19

§4.3. Предопределение пола у человека.________________________________________ 20

§5. Диагностика генетических болезней.__________________________________ 23

§5.1. Методы дородовой диагностики__________________________________________ 23

§5.2. Степень риска__________________________________________________________ 26

§5.3. Аутосомные нарушения_________________________________________________ 26

§5.4. Нарушения, сцепленные с Х-хромосомой.__________________________________ 27

§6. Генетические болезни.__________________________________________________ 29

§7. Генная терапия.________________________________________________________ 33

§8. Методы исследования наследственности человека.___________________ 36

§8.1. Генеалогический метод._________________________________________________ 36

§8.2. Близнецовый метод._____________________________________________________ 38

§8.2. Цитогенетический метод.________________________________________________ 38

§8.3. Биохимические методы__________________________________________________ 38

Заключение.________________________________________________________________ 39

Краткий словарь терминов._______________________________________________ 40

Список используемой литературы.________________________________________ 45


Введение.

Если век 19-й по праву вошел в историю мировой цивилизации как Век Физики, то стремительно завершающемуся веку 20-му, в котором нам счастливилось жить, по всей вероятности, уготовано место Века Биологии, а может быть, и Века Генетики.

Действительно, за неполных 100 лет после вторичного открытия законов Г. Менделя генетика прошла триумфальный путь от натурфилосовского понимания законов наследственности и изменчивости через экспериментальное накопление фактов формальной генетики к молекулярно-биологическому пониманию сущности гена, его структуры и функции. От теоретических построений о гене как абстрактной единице наследственности - к пониманию его материальной природы как фрагмента молекулы ДНК, кодирующего аминокислотную структуру белка, до клонирования индивидуальных генов, создания подробных генетических карт человека, животных, идентификации генов, мутации которых сопряжены с тяжелыми наследственными недугами, разработки методов биотехнологии и генной инженерии, позволяющих направленно получать организмы с заданными наследственными признаками, а также проводить направленную коррекцию мутантных генов человека, т.е. генотерапию наследственных заболеваний. Молекулярная генетика значительно углубила наши представления о сущности жизни, эволюции живой природы, структурно-функциональных механизмов регуляции индивидуального развития. Благодаря ее успехам начато решение глобальных проблем человечества, связанных с охраной его генофонда.


§1. Генетика и этапы её развития.

Итак, что такое генетика? Генетика – это наука о наследственности и изменчивости организмов, она раскрывает сущность того, каким образом каждая живая форма воспроизводит себя в следующем поколении, и как в этих условиях возникают наследственные изменения, которые передаются потомкам, участвуя в процессах эволюции и селекции. Наследственность и изменчивость – это две стороны одних и тех же основных жизненных процессов. В противоположности наследственности и изменчивости заключена диалектика живого.

В настоящее время она является фундаментом новых методов селекции, познания биологических основ человека и современной теории эволюции. Больших успехов добились молекулярная генетика, цитогенетика, популяционная генетика и др.

В начале развития генетики как науки ее целью было выявление общих законов передачи признаков от одного поколения другому. Затем перед генетикой встала новая задача - выявить механизмы, лежащие в основе этих законов, и связать их с микроструктурами клетки. Далее возник вопрос: как и каким образом физико-химические свойства наследственного вещества и содержащаяся в нем генетическая информация могут перевоплощаться в признаки развивающегося организма? Генетика классическая породила генетику молекулярную. Содержащаяся в оплодотворенном яйце генетическая информация охватывает весь комплекс признаков и особенностей, которые организм проявляет в течение всего онтогенеза, т.е. от момента оплодотвореня до смерти. Этими сложными биохимическими процессами, лежащими в основе развития всех признаков морфологических, физиологических и любых других, вплоть до поведенческих, занимается другая отрасль генетики - феногенетика. Как организм не может существовать вне окружающей среды, так и формирование его признаков в результате активности наследственного вещества происходит в строго определенных условиях, и каждый признак зависит не только от наследственного фона, но и от условий, в которых он развивается. исследования взаимосвязей наследственного вещества и окружающей среды является чрезвычайно важной проблемой феногенетики.

Генетика изучает явления наследственности и изменчивости на различном уровне организации живой материи; молекулярная генетика исследует ее на молекулярном уровне, другие отрасли генетики занимаются этими проблемами на уровне клетки, организма и ,наконец, на уровне коллектива особей, населяющих общую территорию, принадлежащих к одному виду, объединенных потенциальной возможностью обмена наследственными факторами и действием отбора. Последнее - задача популяционной генетики.

Каждая из этих отраслей генетики имеет свои методы исследований и цели, хотя все они взаимосвязаны. Если феногенетика доводит развитие какого-либо признака в организме до уровня молекулярных изменений, то и популяционная генетика сводит генетические изменения, которым подвергается популяция, к молекулярным изменениям наследственного вещества под действием мутаций и отбора.

В начале своего развития генетика была изолирована от других наук. Эта изоляция, однако, была быстро преодолена.

Для исследования природы явлений наследственности и изменчивости генетические методы сочетались с методами цитологии, физики, химии, математики, биохимии, иммунологии и ряда других наук. Было показано, что материальной основой наследственности и изменчивости при их специфике для разных категорий системы организмов в принципе едины для всего живого: человека, животных, растений, микроорганизмов и вирусов.

На рубеже 18-19 веков были сделаны первые попытки верно оценить наследование ряда патологий у людей. Мопертьи в 1750 году описал, что полидактилия может передаваться по аутосомнодоминантному типу любым из родителей. Причем сделанные выводы предвосхитили идеи Грегора Менделя. Адамс в “Трактате о предполагаемых наследственных свойствах болезней” сделал следующие заключения о наличии “семейных” (рецессивных) и “наследуемых” (доминантных) факторов у человека: отметил проявления семейных заболеваний у близких родственников и др., руководствуясь которыми можно было прогнозировать появление некоторых болезней у родственников.

В начале 19-го века были выявлены некоторые закономерности наследования гемофилии при исследовании ряда родословных, в которых встречались лица, страдающие этой болезнью. Об опасности этой болезни при обряде обрезания у новорожденных указывалась ещё в Талмуде: “Женщины в таких семьях передают эту склонность от отцов к своим детям, даже когда они замужем за мужчинами из других семей, не подверженных кровотечениям…”

В 1865 г. Ф. Гальтон предположил, что способности человека зависят от наследственных факторов. В 1889 г. он предложил изучать влияние качеств, которые могут улучшить здоровье человека. В дальнейшем его идеи способствовали развитию евгеники. Он разработал генеалогический и близнецовый методы исследований человека.

Описание наследования дальтонизма (сцепленное с полом, рецессивное наследование) приведено офтальмологом Горнером (Швейцария, 1876).

О. Гертвиг в 1875 г. описал процесс оплодотворения. А. Вейсман указал, что носителями наследственных свойств являются ядра клеток, лежащих в основе процессов роста и размножения клеток у человека. В 1882 г. Э. Ван Беден показал, что в половых клетках число хромосом в два раза меньше, чем в соматических. При оплодотворении число хромосом увеличивается вдвое. Термин “хромосомы” был предложен В. Вальдеером в 1888 г. для обозначения постоянных элементов ядра клетки.

Законы наследования моно-, ди- и полигенных признаков, установленные Г. Менделем в 1865 г., определили развитие генетики как науки на весь последующий период.

Официальной датой рождения генетики принято считать весну 1900 г., когда независимо друг от друга Г. де Фриз (Голландия), Корренс Германия), Чермак (Австрия) переоткрыли законы Менделя, что дало толчок к развитию генетических исследований.

В 1910 г. Т. Морганом и его сотрудниками была показана роль хромосом в наследственности и установлены законы сцепленного наследования, которые вместе с законами независимого Г. Менделя составляют фундамент классическом генетики.

Работы А. С. Серебровского по антропогенетике (1922 – 1929) способствовали становлению медико-генетического института, который был создан в 20-х годах под руководством профессора С. Г. Левита.

В 1924 году Г. А. Левитский применил термин “кариотип” для обозначения ядерных особенностей организма. Термин “идиограмма” (типичный для вида состав ядра) был предложен С. Г. Навашиным, но распространения не получил. Лишь после уточнения Левитским в 1931 году идиограмма стала предполагать графическое изображение совокупности признаков хромосом (диаграммно-схематическое изображение).