Специфичность диагностической системы не зависит от выбора фермент-субстратной пары и определяется в основном чистотой и гомогенностью используемых при конструировании диагностикума препаратов антигенов и антител. Использование в ТФИФА не гетерогенных антиген-содержащих препаратов и даже не очищенных бактерий и вирусов, а индивидуальных бактериальных и вирусных белков - вот единственный, хотя и трудоемкий путь повышения специфичности диагностических систем. То же можно сказать и о препаратах, используемых в ТФИФА иммуноглобулинов, - желательно использовать не цельные сыворотки и даже не суммарные гаммаглобулиновые фракции этих сывороток, а аффинноочищенные или моноклональные антитела.
Особой популярностью в настоящее время у нас в стране пользуются иммуноферментные конъюгаты на основе пероксидазы хрена. Это, вероятно, сиязано с доступностью сырья для выделения этого фермента, относительно легкостью очистки, достаточно высокой стабильностью , и большим числом хромофорных и флуорохромных субстратов.. Тем не менее следует подчеркнуть, что два других достаточно часто используемых в ТФИФА фермента - щелочная фосфатаза и b-галактозидаза - в некоторых случаях имеют целый ряд преимуществ перед пероксидазой. Это, во-первых, высокая стабильность, растворимость и нетоксичность субстратов, а, во-вторых, возможность использования относительно недорогих флуорохромных субстратов, применение которых резко повышает чувствительность анализа.
Определенное значение для реализации максимальной чувствительности ТФИФА имеет правильный выбор субстрата. Наряду с естественным желанием использовать субстраты с высокой удельной хромофорной активностью (высокий коэффициент молярной экстинкции окрашенного конечного продукта) необходимо принимать во внимание такие важные факторы, как рвстворимость субстрата и продуктов его ферментативной модификации в условиях проведения анализа и стабильность этих субстратов при хранении и в процессе эксперимента.
Чувствительность диагностических систем на основе ТФИФА лишь частично зависит от типа выбранной при конструировании диагностикума фермент-субстратной пары. В основном эта чувствительность определяется другими факторами, которые трудно учесть: способом синтеза конъюгата, гомогенностью и удельной активностью используемых для такого синтеза антител и антигенов, а также многочисленными па.раметрами проведения анализа (способом иммобилизации выявляемого антигена или антител, степенью их солюбилизации в биологическом или клиническом образце и т. д.). Именно в связи с этим в литературе приводится такой широкий диапазон пределов чувствительности для уже разработанных методик ТФИФА. На основании анализа этих данных трудно рекомендовать при конструировании вновь создаваемых твердофазных иммуноферментных систем наилучший фермент и наулучший субстрат. Следует лишь отметить, что с помощью использованных ранее фермент-субстратных пар метод ТФИФА позволяет выявить в исследуемом образце нанограммовые количества антигена при использовании хромофорных субстратов и пикограммовые количества антигена при применении флюорохромных субстратов.
Если при конструировании новой системы на основе ТФИФА невозможно или нежелательно использование коммерческих универсальных конъюгатов (антивидовых фермент-меченных антител), то встает вопрос о синтезе конъюгата на основе выбранных фермента и антител. Как уже указывалось, наиболее специфичные и высокоактивные конъюгаты могут быть получены на основе только максимально очищенных белковых ингредиентов. Однако в связи с относительной сложностью и трудоемкостью работ по тщательной очистке бактериальных и вирусных антигенов в настоящее время при разработке иммуноферментных систем часто используются либо цельные сыворотки, либо суммарные фракции иммуноглобулинов, содержащие в своем составе как специфические, так и балластные антитела. Антигены также часто не подвергаются надлежащей очистке и используемый при конструировании диагностикума белок составляет лишь небольшой процент от суммарного белка. В связи с этим резко повышается вероятность неспецифических реакций, особенно опасных при высокой чувствительности, которой обладают ИФ-методики.
Большое значение для успешного использования ТФИФА в микробиологических и вирусологических исследованиях имеет правильная интерпретация полученных результатов. Это особенно важно при использовании клинического материала, когда понятия «контроль» и «опыт» часто определяются с большой долей субъективизма. Для тестирования положительных проб вначале ставят 6-8 тестов на образцах, взятых от заведомо здоровых людей и определяют среднюю оптическую плотность контроля и стандартное отклонение при естественном разбросе данных за счет различных методических погрешностей. Проба обычно считается положительной, если отклонение ее оптической плотности от контроля в 3 раза превышает стандартное.
Иммуносенсоры
Впервые принцип иммуносенсоров был использован М. Аizawа и соавт. (1977), когда они сконструировали мембрану, способную на иммунологический ответ. В настоящее время опубликовано несколько сообщений об использовании аналогичного подхода для определения различных микробных антигенов или антител к ним [Horbach Е. еt аl, 1989, Parry R. еt аl., 1990].
Принцип методов, основанных на иммуносенсорной технологии, заключается в изменении физико-химических свойств мембраны или другого носителя, связанного с антителами или антигенами. Уменьшение мембранного потенциала, изменение оптических или химических свойств среды, прилегающей к носителю, выявляются с помощью специального электрода или оптического устройства и выражаются в виде электрического сигнала.
Существует два основных типа иммуносенсоров, различающихся по особенностям определения реакции антиген - антитело. 1 тип - так называемый немеченый иммуносенсор. Такое устройство состоит из металлического электрода для потенциометрии, покрытого полупроницаемой полимерной мембраной с иммобилизованными на ней молекулами антител (или антигена). В результате реакции с искомым комплементарным веществом образуются иммунные комплексы на поверхности мембраны. Это приводит к изменению заряда мембраны и ее поверхностного потенциала. Изменение разности потенциалов и определяется электродом.2 тип - меченый иммуносенсор. В этом случае на мембране также иммобилизуются антитела или антиген, но реакция определяется по изменению проводимости (амперметрия). Для этого используют кислородный электрод, реагирующий на изменение концентрации О2 после реакции антител с антигеном, меченым ферментом (например, каталазой). Конкуренция искомого антигена с известным количеством меченого конъюгата дает изменение проводимости раствора в области мембраны, что реализуется в виде электрического сигнала на выходе электрода. В другой модификации результат цветной ферментативной реакции может быть определен и с помощью оптического устройства.
Для оценки результатов реакции в двух описанных типах иммуносенсоров значительно реже используют пьезоэлектрический эффект, измерение температурных колебаний и некоторые другие способы, менее разработанные в сравнении с электрохимическими и оптическими.
Особенностью иммуносенсоров, отличающей их от других систем иммунохимической диагностики, является то, что информация о возникновении иммунного комплекса непосредственно реализуется в виде физического сигнала - изменения разницы потенциалов, оптической плотности, силы тока и т. п.
Одним из первых применений иммуносенсоров было измерение количества антител при сифилисе. Для этого на полупроницаемой мембране электрода связывали антигены трепонемы и инкубировали его в растворе сыворотки крови. Изменения разницы потенциалов наблюдали вплоть до разведения положительной контрольной сыворотки 1:800, причем, увеличение сигнала соответствовало повышению концентрации антител. Важно то, что после отмывания иммуносенсор можно использовать вновь. Аналогичный подход был применен для определения антител другой специфичности (к групповым антигенам крови) и альбумина. Более сложное строение иммуносенсора увеличивает чувствительность анализа. Так при использовании меченого иммуносенсора достигается чувствительность до 0,1 нг белка/мл. Имеются данные об определении таким методом HBs-антигена с помощью I-электрода и антител к HBs-антигену, меченых пероксидазой [Аizawа М., 1987]. Устройство, включающее стеклянную матрицу, активированную различными вирусными антигенами (биочип) было использовано для серологической диагностики вирусных заболеваний [Ноrbach Е. еt аl., 1989]. Предприняты попытки определять с помощью иммуносенсоров продукты синтеза некоторых грибов (охратоксин А), клетки С. Albicans.
Хотя в настоящее время отсутствуют коммерческие образцы иммуносенсоров для диагностики инфекционных заболеваний, следует обратить внимание на основные этапы использования подобных устройств.
Опыт использования аналогичных систем для определения глюкозы в крови, гормонов, низкомолекулярных веществ позволяет разделить процесс анализа на три этапа: