Смекни!
smekni.com

О субстрате следов памяти в мозге (стр. 3 из 4)

Возможный кандидат на роль носителя следов долговременной па­мяти должен, очевидно, отвечать следующим требованиям: а) под влия­нием проявлений активности нейрона (в виде быстрых и медленных элек­трических процессов, химических превращений типа выделения медиато­ра и его взаимодействия с воспринимающим субстратом и т.п.) в нем должны возникать стабильные изменения; б) эти изменения должны быть специфически связаны с вызвавшим их воздействием, т. е. нести специфическую информацию о нем, которая и подлежит извлечению при считывании; в) они должны сохраняться, несмотря на постоянно проис­ходящее обновление вещества нервной ткани; г) раз возникнув, эти из­менения должны быть как-то «защищены» от последующих превращений в связи с поступлением новых порции изменяющего воздействия. При оценках же результатов экспериментального анализа необходимо учитывать, с одной стороны, что фиксация следа в клетке зависит от це­лого ряда процессов, лежащих в основе общих проявлений ее жизне­деятельности, и что, следовательно, вмешательство в такие процессы может неспецифическим образом нарушить эту фиксацию. С другой сто­роны, следует помнить, что функция памяти тестируется обычно на про­явлениях целостной деятельности организма и что нарушения в этой де­ятельности (например, в формировании условного рефлекса) под влия­нием того или иного экспериментального воздействия отнюдь не обязательно связаны с первичным нарушением памяти, а могут быть следствием нарушения других процессов (операций), участвующих в формировании или реализации подобных проявлении.

К настоящему Бремени мы почти не рас­полагаем фактами, однозначно трактуемыми. Так, вся огромная масса исследований, доказывающих участие РНК в процессах памяти, не ис­ключает, по-видимому, только неспецифического характера этого уча­стия, а в ряде случаев определенно демонстрирует такой характер. О справедливости последнего утверждения свидетельствуют, в частности, опыты с применением ингибиторов и стимуляторов синтеза РНК (или белков на РНК), в которых было выявлено влияние (угнетающее или стимулирующее) главным образом на выработку новых навыков, а не на их сохранение, что следовало бы ожидать в первую очередь, так как воздействию подвергался предполагаемый субстрат долговременной памяти. В этом же плане можно сослаться на опыты, выявившие облегчающее влияние на научение и память введения в организм РНК, в том числе—и через пищеварительный тракт, где введенная РНК подвер­гается существенному разрушающему воздействию. В отношении дан­ных об облегчении специфического научения при помощи парэнтерального введения одним животным экстрактов мозга других, предваритель­но обученных, животных того же вида, то при деталь­ном анализе было установлено, что такое влияние осуществляется при помощи фракции, содержащей малые бел­ковые молекулы и полипептиды, а не РНК. Кроме того, была установле­на непроходимость гематоэнцефаличсского барьера для РНК. Опыты же с локальным интрацеребральным введением веществ, угнетающих синтез или стимулирующих расщепление РНК (например, фермента рибонуклеазы), доказывают не более того, что расстройство функции нервных элементов в зоне введения приводит к нарушению тестируемой деятельности.

Имеются и результаты исследований, в которых исключить специфи­ческий характер участия РНК в процессах памяти представляется бо­лее затруднительным. К ним, в частности, относятся данные Хидена и Эгихаши об изменениях в распределении оснований в молеку­лах РНК, выделенной из корковой моторной зоны, соответствующей «представительству» «обучавшейся» конечности животного. Эти данные, по мнению авторов, подтверждают справедливость известной гипотезы Хидена о кодировании памяти путем перегруппировок (под влиянием электрохимических сдвигов, вызываемых приходящими к нейрону им­пульсами) оснований в молекуле РНК, что должно приводить в после­дующем к синтезу на такой РНК молекул белка измененной структуры, определяющих особую чувствительность нейрона к импульсам только определенной (вызвавшей это изменение) конфигурации. Однако и в от­ношении указанных данных Хидена и Эгихаши могут быть выдвинуты определенные возражения. Существующие сведения о сложной системе регулирования процессов синтеза на матричных молекулах, протекающих на разных этапах осуществления функции, не позво­ляют исключить неспецифический характер наблюдавшихся сдвигов, тем более, что сходные сдвиги обнаружены в период резкого усиления функ­ции в РНК, выделенных из ненервных клеток разных органов. То обстоятельство, что описанные изме­нения обнаружены в клетках зоны коры, являющейся скорее местом вы­хода команд к эффекторам, чем зоной предварительной переработки информации, также делает более правдоподобным представление о не­специфическом (т. е. связанном с усилением функции, а не с фиксацией следа) характере этих изменений.

Наконец, в целом гипотеза Хидена не может дать удовлетворитель­ного ответа в связи с последним из сформулированных выше требований к субстрату долговременной памяти, а именно—как один раз изменен­ная в каком-либо звене своей структуры молекула РНК избегает повтор­ных изменений в этом же звене. Попытки Моррелла [549] найти выход в предположении о связи молекул РНК с фосфолипидами клеточной мем­браны, которые якобы играют защитную роль, пока малоубедительны, как и попытки Джона {480] перенести акцент с качественных изменений в структуре РНК на количественные изменения в виде соотношения кон­центраций разных видов РНК, постоянно существующих в клетке.

С аналогичными затруднениями сталкивается и гипотеза о роли скру­чивания молекул ДНК как носителя долговременной памяти (В. Л. Рыж­ков [219]). В то же время гипотезы, пытающиеся совсем исключить уча­стие нуклеиновых кислот в процессах долговременной памяти (напри­мер, гипотеза Сциларда [637] о комплиментарных отношениях белков в контактирующих участках синаптической мембраны) наталкиваются на трудность объяснения механизмов стабильности возникающих отноше­ний в условиях достаточно интенсивных процессов износа и обновления материального субстрата.

Все это привело к тому, что в последнее время все больше исследо­вателей склоняется к выводу о роли морфологических изменений нейро­на в процессах долговременного сохранения следа, в основном в виде протоплазматического роста нервных отростков, ветвления терминалей аксона с новообразованием синапсов (Янг [687], Вебер {667], Хебб (447], Конорский [495], Прибрам [592], Розенцвейг [604] и др.).

Прибрамом [592] на основании наблюдений над регенерированием нервных волокон в зоне повреждения мозговой ткани выдвинута гипоте­за о направляющей рост новообразующихся отростков роли глин, кото­рая таким образом (в соответствии с концепцией Галамбоса [415] о глио-невральном единстве как основе деятельности мозга) принимает участие в формировании следов долговременной памяти. По Прибраму, подоб­ный механизм возникновения следа хорошо объясняет второй этап про­цесса консолидации следа, когда электросудорожный шок вызывает обратимое снижение запоминания. Это снижение запоминания может быть связано с сокращением под влиянием электрошока кончика расту­щего волокна, способного к амебоидным движениям (подобные движе­ния отростков наблюдались в культуре ткани), и отхождением его от следующего нейрона, с нарушением контакта. Последующий рост волок­на восстанавливает этот контакт. В связи с гипотезами такого рода роль матричных молекул (ДНК, РНК) в явлениях долговременной памяти может проявляться в качестве фактора, управляющего пластическими процессами в нейроне (как это следует из представлений, развиваемых Ф. 3. Меерсоном [159] о так называемом пластическом обеспечении функции).

Следует отметить, что гипотезы о росте нервной сети и новообразо­вании синапсов как носителя долговременной памяти не имеют пока достаточных фактических подтверждений. Данные Розенцвейга [604] отно­сительно морфологических и химических различий в мозге животных, развивавшихся в разной по возможностям научения среде (т. е. с раз­ным багажом памяти), носят сугубо предварительный характер. Неясно, связаны ли эти различия с объемом запоминавшегося материала или с развитием мозга под влиянием более активной деятельности животных, с тем, что Хебб [447, 448] называл первичным научением, а Джерард [427, 428] тонко определил как способность «учиться учиться». Помимо этого, все концепции, связывающие возникновение и хранение следов долговре­менной памяти с новообразованием отростков и синапсов, сталкиваются со значительными трудностями перед необходимостью объяснения ис­ключительной устойчивости этих следов к повреждающим мозг воздей­ствиям, их удивительной пластичности, что, очевидно, подразумевает возможность использования разных синапсов для фиксации одного и того же следа и одних и тех же синапсов для фиксации многих следов памяти (Лешли [511]).

Таким образом, в настоящее время вопрос о природе следов долго­временной памяти столь же далек от окончательного разрешения, как и вопрос о природе следов кратковременной памяти. Можно думать, что такое положение является, в большой мере, результатом отставания в разработке теоретических вопросов организации памяти б мозге, своего рода недооценки важности такой разработки. В результате на вопросы «как» и «где» пытаются ответить до выяснения ответа на вопрос «что». Ответ же на последний вопрос достаточно труден и отнюдь не тривиален.

Сущность явлений, подлежащих фиксации в памяти, и локализация следов

Ответ на вопрос о том, что фиксируется в памяти, представ­ляет большой интерес и очень важен для понимания ряда сторон физио­логических механизмов памяти, 0днако сведения по этому поводу носят в основном умозрительный характер. Так, маловероятна простая фикса­ция всей совокупности конкретных нейронных сдвигов, обусловленных запоминаемым событием, вырабатываемым действием. Во-первых, никог­да такое событие или действие при повторении не вовлекает в актив­ность идентичные нейронные (синаптические) приборы. Все больше дан­ных говорит о том, что вхождение того или иного нейрона в систему, осуществляющую данное действие, может быть оценено, учитывая ста­тистический характер нейронных процессов, лишь в вероятностном плане (Джаспер с сотр. [95], Вернер и Маунткастл {673], А. Б. Коган н Е. Н. Со­колов {117] и др.). Научение же (и запоминание) возможно после одно­кратного предъявления ситуации. Во-вторых, известно, что старый навык может выполняться в условиях совершенно новой нейронной координа­ции (например, выполнение передвижения к кормушке после ампутации одной или даже всех конечностей), что опять-таки указывает на исклю­чительную пластичность выученного действия. При всей допустимой из­быточности отложения следов—дублирование следов, дублирование ко­дов (Таубе [641]) —невозможно представить учет мозгом того конкрет­ного варианта, когда локомоцию придется выполнять при отсутствии конечностей. Поэтому следует думать об обязательной фиксации в памя­ти сведений, относящихся к обобщенным, в известной мере, характери­стикам запоминаемого явления, ассоциированных с более ранним опы­том. Такие характеристики, по-видимому, представлены в мозговых про­цессах, связанных в первую очередь с деятельностью регулирующих систем мозга, с организацией восприятия, действия. В отношении двига­тельных актов есть основания думать о фиксации в мозге того, что вслед за И. М. Гельфандом и В. С. Гурфинкелем можно назвать «матрицей управления движением». Таким образом, в приобретенной памяти так же как и в наследственной фиксируются, очевидно, лишь «существенные» переменные, «существенные» характеристики действия (И. М. Гельфанд, В. С. Гурфинкель и М.Л.Цетлин [61], И. М. Гельфанд и М.Л. Цетлин {62], Н. А. Бернштейн {28]) .