Нейрогуморальные системы регуляции АД
Согласно синтетической концепции регуляции АД (А. Гайтон) биокибернетические механизмы сосредоточены в 2-х основных системах:
Система кратковременного действия или адаптационная (пропорциональная) контрольная система;
Система длительного действия или интегральная контрольная система.
Система кратковременного действия
Система быстрого кратковременного действия представлена 2-мя основными регуляторными контурами или петлями биологической обратной связи:
Барорецепторы крупных артерий - центры ГМ - симпатические нервы - резистивные сосуды, емкостные сосуды, сердце - повышение АД.
Почечный (плазменный) эндокринный контур (ЮГА) - ангиотензин II - резистивные сосуды - повышение АД.
Барорецепторный рефлекс
Барорецепторы дуги аорты и синокаротидной зоны + изменение АД - залповая афферентная импульсация через IX-X пару ЧМН - 3 интегральных участка ЦНС:
Дорзомедиальная медулла, nuclei tractus solitarii (NTS) - депрессорный эффект (опосредованный L-глутаматом, субстанцией P);
Каудальная вентролатеральная медулла - снижение периферической симпатической активности, снижение ОПСС - депрессорный эффект (опосредован норадреналином);
Ростральная вентролатеральная медулла - повышение АД.
Барорефлексы достигают максимального эффекта через 10-30 секунд после начала воздействия и отвечают за колебание АД от 100 до 125 мм. рт. ст.
Почечный (плазменный) эндокринный механизм
К эндокринным аппаратам почек относят:
ЮГА, выделяют ренин и эритропоэтин;
Интерстициальные клетки мозгового вещества и нефроциты собирательных трубок, вырабатывают простагландины;
ККС;
Клетки APUD-системы, содержащие серотонин.
ЮГА
В этом аппарате выделяют 4 компонента:
Гранулированные эпителиоидные клетки в стенке афферентной артериолы (юкстагломерулярные клетки);
Клетки плотного пятна;
Клетки Гурмагтига (lacis-клетки);
Мезангиальные клетки клубочка.
ЮГА-клетки вырабатывают ренин – катализатор начального этапа образования ангиотензина. В ЮГА-клетках ренин сосредоточен в специальных секреторных гранулах. Помимо этих гранул в клетках имеются и неспецифические, например гранулы липофусцина.
Роль своеобразного рецептора играет плотное пятно, реагирующее на качественный состав содержимого дистального канальца. Плотное пятно в свою очередь взаимодействует с эпителиоидными клетками через клетки Гурмагтига, что имеет морфологические доказательства. Клетки Гурмагтига, негранулированные гладкомышечные клетки и мезангиальные клетки при гипертрофии ЮГА могут участвовать в выработке ренина, превращаясь в ЮГА-клетки.
ИК мозгового вещества и клетки собирательных трубочек
Ось ИК мозгового вещества ориентированна перпендикулярно к длиннику сосочка пирамиды, они расположены параллельно друг другу и лежат между собирательными трубочками, сосудами и тонкими сегментами петель Генле. ИК имеют длинные цитоплазматические отростки, позволяющие им контактировать с сосудами, канальцевым аппаратом почки и друг с другом. Клетки содержат липидные капли, причем концентрация гранул в ИК и самих ИК в мозговом веществе почки возрастает по направлению к вершине сосочка.
Функция ИК заключается в синтезе и выделении почечных простагландинов. Нефроциты собирательных трубочек также участвуют в синтезе почечных простагландинов, но меньше, чем ИК.
Калликреин-кининовая система
Представлена в почках нефроцитами дистальных канальцев. Калликреин, выделяясь в просвет канальцев, взаимодействует с кининогенами; образующиеся кинины могут достигать мозгового вещества почки и вызывают высвобождение простагландинов из ИК и НСТ.
Взаимодействие эндокринных аппаратов почек
Клеточная гетерогенность ЮГА обеспечивает ауторегуляцию его функций: клетки плотного пятна улавливают изменения состава мочи (снижение концентрации хлорида натрия в моче, например, ведет к повышению активности ренина в плазме); мезангиальные клетки, обладающие рецепторами к ангиотензину II, улавливают изменения состава плазмы крови, а эпителиоидные и гладкомышечные клетки ЮГА, имеющие b-рецепторы, - изменения уровня артериального давления. Синтез ренина находится под контролем простагландинов, синтез простагландинов – под контролем ККС.
Почечный механизм проявляет активность в узком диапазоне – от 100 до 65 мм. рт. ст. В основном включается при острой гипотензии.
ЮГА выделяет ренин, который в норме на 80% находится в неактивном состоянии (проренин). Ренин является протеолитическим ферментом – аспартилпротеазой. Допускается, что активизация проренина осуществляется почечным калликреином. Повреждённые почки, в отличие от здоровых, секретируют преимущественно активный ренин, но повреждение не влияет на выделение проренина.
Ренин взаимодействует с плазменным белком a2-глобулином (тетрадекапептид), называемый субстратом ренина или ангиотензиногеном. В результате образуется ангиотензин I (декапептид).
Ангиотензин I под влиянием ангиотензинконвертирующего фермента (АКФ) превращается в ангиотензин II. АКФ является дипептидилкарбоксипептидазой, отщепляющей с С-концевого участка молекулы ангиотензина I 2 аминокислотных остатка.
Дигидропептидилкарбоксипептидаза выполняет 2 функции:
Функция АКФ;
Функция кининазы II – инактивация брадикинина в результате отщепления с С-конца 2-х аминокислотных остатков.
Кроме того, АКФ участвует в метаболизме атриопептина, субстанции Р, энкефалинов, b-цепи инсулина, b-липотропина, рилизинг фактора лютенизирующего гормона.
АПФ (дипептидилкарбоксипептидаза) идентична кининазе II, вызывающей разрушение брадикинина.
В соматической форме АКФ имеется 2 активных центра, гомологичных домена: в N-участке, C-участке молекулы фермента. Каталитическая активность и химическая структура N и C доменов неодинаковы. C-домен катализирует расщепление ангиотензина I и брадикинина, тогда как N-домен расщепляет преимущественно рилизинг-гормон лютеинизирующего гормона.
Ингибиторы АКФ различаются по силе и избирательности связывания с активными центрами в молекуле соматической формы АКФ: каптоприл имеет сродство к N-домену, лизиноприл к C-домену, трандолаприл к обоим.
В микрососудах АПФ располагается на мембранах клеток. Этот фермент находится в адвентиции крупных сосудов в связи с vasa vasorum. Циркулирующие молекулы АПФ попадают в кровь, отделяясь от тканевых гликопротеидов. Важнейшая роль лёгких в превращении АI в АII обусловлена богатой их васкуляризацией и тем, что вне лёгких АII не подвергается инактивации.
Физиологические эффекты А-II, опосредованные АТ1 и АТ2 рецепторами
АТ1-рецепторы | АТ2-рецепторы |
Вазоконстрикция;Стимуляция синтеза и секреции альдостерона;Реабсорбция натрия в почечных канальцах;Гипертрофия кардиомиоцитов;Пролиферация гладкомышечных клеток сосудов;Усиление периферического действия норадреналина;Усиление активности центральных звеньев САС;Усиление высвобождения вазопрессина;Снижение почечного кровотока;Торможение секреции ренина. | Стимуляция апоптоза;Антипролиферативный эффект;Дифференцировка и развитие эмбриональных тканей;Снижение пролиферации клеток эндотелия;Вазодилятация. |
Все известные физиологические сердечно-сосудистые и нейроэндокринные эффекты АII опосредованы АТ1-рецептор. Все они способствуют повышению АД, развитие гипертрофии левого желудочка, утолщение стенок артериол, что способствует уменьшению их просвета. Эффекты АII, которые опосредуют АТ2 рецепторы – вазодилятация и торможение пролиферации клеток, в том числе кардиомиоцитов, гладкомышечных клеток. Таким образом, через АТ2-рецепторы АТII частично ослабляет свои эффекты.
АТ1-рецепторы на мембранах гепатоцитов и клетках ЮГА почек опосредуют механизмы обратной отрицательной связи в РААС. Поэтому в условиях блокады АТ1-рецепторов в результате нарушения этих механизмов обратной отрицательной связи увеличивается синтез ангиотензиногена печенью и секреция ренина клетками ЮГА. То есть при блокаде АТ1-рецепторов происходит реактивная активация РААС, которая проявляется повышением уровня ангиотензиногена, ренина, АТ-I и АТ-II. Повышение образования АТ-II в условиях блокады АТ1-рецепторов приводит к тому, что преобладают эффекты стимуляции АТ1-рецепторов.
3-й механизм антигипертензивного действия блокаторов АТ1-рецепторов объясняется повышением образования ангиотензина (I-7), обладающего вазодилятирующими свойствами – он образуется из А-I под действием нейтральной эндопептидазы или из А-II под действием пролиловой эндопептидазы. АТ (I-7) обладает помимо вазодилятирующего, натрийуретическим свойствами, которое опосредуется простагландинами, простацилинами, кининами, эндотелиальным релаксирующим фактором. Эти эффекты обусловлены воздействием на АТх.
Влияние АТ-II на функцию и структуру клетки
УВЕЛИЧЕНИЕ ОПСС | УВЕЛИЧЕНИЕ ОЦП |
Сердце:Инотропное действие;Коронарная констрикция;Гипертрофия левого желудочка;Сосуды:Вазоконстрикция;Гипертрофия медии; | Почки:Осовождение альдостерона;Задержка натрия;Внутриклубочковая пролиферация;ЦНС:Симпатическая стимуляция;Освобождение НА;Освобождение вазопрессина; |
Белки РААС и их генетические детерминанты
Белок | Известные генетические детерминанты |
Ренин | Около 30% больных ЭГ имеют более высокий уровень ренина, но для определённого вывода о влиянии гена ренина на развитие АГ необходимы дальнейшие исследования сцепления генов. |
Кининаза II (АКФ) | Уровень АКФ в плазме детерминирован генетически и на 50% связан с полиморфизмом АКФ типа J/D (Jnsertio/Deletion) – наличие или отсутствие 287-й пары оснований; полиморфизм – наличие в генофонде популяции нескольких аллелей какого-либо гена; Аллели – сохранившиеся в популяции варианты одного гена в результате генных мутаций и отличающиеся друг от друга последовательностями нуклеотидов. Данный полиморфный участок, расположенный в 16-м интроне гена АКФ и содержащий 2 аллеля в зависимости от наличия (аллель J) или отсутствия (аллель D) вставки из 287 пар оснований. У пациентов, гомозиготных по D-аллелю, уровень АКФ почти в 2 раза превышает уровень АКФ, гомозиготных по аллелю J. |
Ангиотензиноген | С гипертензией связывают 2 полиморфных варианта гена ангиотензиногена – Т174M и М235Т, объединённых заменой треонина (Т) на метионин (М) в 174 и 235 положении АК-последовательности. У пациентов с АГ увеличена доля генотипа Т235Т. |
Рецепторы к ангиотензину II | Ген к АТ1 в своём третьем, нетранслоцируемом участке содержит полиморфный участок А1166С (замена аденозина на цитизин в 1166-м положении). У лиц с гипертензией аллель встречается чаще. |
Интегральная система регуляции АД