Смекни!
smekni.com

Нервная регуляция кроветворения (стр. 7 из 8)

ГОМЕОСТАЗ

|

обычные изменения среды >>>>>>>>>>>> местная авторегуляция

|

|

воздействие выше нормы >>>>>>>>>>>> корригирующее воздействие высшего уровня

|

|

чрезвычайный раздражитель, нейроэндокринная стресс-

экстремальная ситуация >>>>>>>>>>>> реакция, мобилизация всех

систем

Стрессом принято считать ту форму адаптационных реакций, ко­торая связана с включением нейроэндокринного звена, вызывающего мобилизацию всех систем организма, как выражение крайнего напряже­ния защитных сил.

Стресс-реакция может возникать и без физического воздействия - при так называемом эмоциональном стрессе. Клинико-эксперименталь­ное восприятие стресса у человека было широко изучено шведскими авторами. Было показано, что как избыток, так и полное выключение психоэмоционального воздействия может привести к состоянию стрес­са (L.Levi,1972).

8.1. РОЛЬ НЕРВНОЙ И ЭНДОКРИННОЙ СИСТЕМ

В ВОЗНИКНОВЕНИИ СТРЕССА.

Начальный (афферентный) импульс, вызывающий стресс, неизвес­тен, это может быть эмоциональное возбуждение, нарушение гомеоста­за, влияние какого-либо метаболического фактора и так далее. Неза­висимо от природы раздражителя и возникновения "первого медиатора", решающее значение в эфферентном осуществлении стресс-реакции имеют два пути:

1) либо через гипоталамус >>гипофиз >> кору надпочечников

2) либо через возбуждение симпатической нервной системы, которое проявляется путем выделения катехоламинов - адреналина в мозго­вом слое надпочечников, норадреналина - в центральной нервной системе и адренэргических синапсах.

Особую роль в организме в начальную стадию стресс-реакции иг­рает симпатико-адреномедуллярная система. Значение симпатической нервной системы в адаптации организма значительно шире и выходит за пределы проблем стресса. Однако ее роль при стрессе рассматри­вается в качестве одного из пусковых механизмов усиления секре­ции гипофиза. При психоэмоциональном воздействии на человека уве­личение уровня катехоламинов в крови и моче является наиболее чув­ствительным тестом стресс - реакции. При этом включения системы гипофиз - кора надпочечников может и не быть.

Многочисленными работами H.Selye и его последователей уста­новлено, что основной гормональный механизм в реализации стресс­реакции запускается в гипоталамусе, в частности в дугообразном ядре. Здесь под влиянием нервных импульсов, поступающих из коры головного мозга, ретикулярной формации, лимбической системы, гип­покампа и миндалевидного комплекса, возникают сложные нейро-гумо­ральные процессы (H.Selye,1979), действующие по типу обратных связей.

Гипоталамус рассматривается как высший центр регуляции эндо­кринных функций. Поступающие в него афферентные сигналы реализуют­ся не только под влиянием нервных импульсов, но и различных гормо­нов (Б.В.Алешин, "Гипоталамус и щитовидная железа", 1981).

Установлено, что некоторые нервные клетки способны к секре­торной деятельности. Они воспринимают афферентный нервный импульс как обычно, но посылают свои эфферентные импульсы в виде гормонов. Гормоны гипоталамуса получили название релизинг-факторы.

8.2. УЧАСТИЕ ВЕГЕТАТИВНОЙ НЕРВНОЙ СИСТЕМЫ

В ФОРМИРОВАНИИ РЕАКЦИИ СИСТЕМЫ КРОВИ

ПРИ СТРЕССЕ.

Известно, что передача импульса от нейрона к клеткам другой ткани осуществляется с помощью медиатора, который высвобождается из окончания нервного волокна и взаимодействует со специфическими рецепторами постсинаптических мембран. Однако, транссинаптический путь передачи нервного возбуждения на ткани не является единствен­ным. Это связано с тем, что медиаторы из синаптических щелей про­никают в межклеточную жидкость и кровь и, таким образом, превраща­ются в дистантные раздражители. Такая внесинаптическая передача нервного импульса особенно важна для кроветворных органов, где клетки в основном находятся во взвешенном состоянии и не имеют не­посредственной иннервации. Поэтому в последующие годы изучалось влияние на систему крови медиаторов нервной системы или выделяю­щихся под их влиянием веществ, а также препаратов, блокирующих рецепторы тканей. Применение различных нейротропных веществ позво­ляет более точно выявить отдельные механизмы нервной регуляции ге­мопоэза и миграции клеточных популяций системы крови ( А.П.Гори­зонтов "Стресс и система крови").

Komiya (1956) представил убедительные доказательства роли центральной нервной системы в регуляции гемопоэза. По его данным различные раздражения, вызывающие те или иные изменения в картине крови, адресуются прежде всего к нервным центрам, откуда возбужде­ние по нервным путям передается в печень и селезенку, где образу­ются гемопоэтины, стимулирующие тот или иной вид гемопоэза. Осно­вываясь на опытах с перевязкой чревных и блуждающего нервов, автор пришел к выводу, что симпатическая иннервация стимулирует, а пара­симпатическая тормозит гемопоэз. Такой же точки зрения придержива­ются А.П.Ястребов,Б.Г.Юшков и др."Регуляция гемопоэза при воздейс­твии на организм экстремальных факторов", было показано, что умень­шение числа клеток в селезенке регулиррется через альфа-адрено­рецепторы, увеличение числа лимфоидных клеток в костном мозгу-через бетта-адренергические рецепторы, а через М-холинорецепторы опос­редуется миграция эозинофилов из костного мозга.

8.3. ВЛИЯНИЕ АДРЕНАЛИНА

А.П. Горизонтовым"Стресс и система крови" было показано:

в связи с тем, что увеличение тонуса симпатической нервной

системы и выделение катехоламинов всегда имеет место в начальную

фазу стресс-реакции, естественно было предположить, не являются

ли быстро возникающие изменения в системе крови при стрессе резуль­татом воздействия симпатической нервной системы. Для решения этого вопроса было изучено действие адреналина, который вводился в дозе 1 мг/кг массы тела крыс.

Периферическая кровь:

число нейтрофилов уже через 3 часа после введения адреналина зна­чительно повышалось, достигая через 6 часов 400%-ного уровня нор­мы. В дальнейшем число нейтрофилов уменьшалось и через сутки было достоверно ниже нормы. Содержание лимфоидных клеток уменьшалось через 6 часов и 12 часов, однако незначительно и недостоверно;

Костный мозг:

через 6 и 12 часов было отмечено достоверное увеличение числа лим­фоцитов и некоторое уменьшение числа зрелых гранулоцитов (мак­симально через 6 часов). Содержание клеток в селезенке также умень­шалось, примерно 30%, а число тимоцитов практически не изменялось.

Таким образом изменение клеточного состава системы крови под влиянием больших доз адреналина почти не отличалось от изменений, наблюдавшихся при стресс-реакциях после воздействия разнообразных раздражителей (табл.N 5).

Изменение клеточного состава крови крыс через разные сроки после подкожного введения адреналина

в дозе 1 мг/кг

таблица 5

отделы | клеточные | исх. | сроки после введения(час)

| элементы |значен. | 3 | 6 | 12 | 24 |

перифер.кровь нейтроф.лимфоц. 1.7*0.24.8*0.4 5.4*0.54.2*0.4 6.7*0.64.0*0.3 3.4*0.33.4*.04 0.5*0.14.9*0.9
костныймозгселезёнка лимфоид.клеткинейтроф.палочкояд.исегментояд.миелобласты+нейтроф.промиелоцит.и миелоцитыобщ.число 37.2*1.942.5*2.65.7*0.4930*44 45.7*6.238.0*3.66.6*0.7600*46 50.2*0.437.6*0.36.9*0.6640*43 55.6*5.438.5*3.84.9*0.6820*88 51.3*8.341.2*5.86.8*1.1920*83
тимус общ.число 1340*63 1240*83 1170*52 1384*52 1322*92

[ 3 (стр. 87)]

8.4. ИЗМЕНЕНИЯ В СИСТЕМЕ КРОВИ ПРИ ОДНОКРАТНОМ

ВОЗДЕЙСТВИИ НА ОРГАНИЗМ СТРЕССОВЫХ

РАЗДРАЖИТЕЛЕЙ (ИММОБИЛИЗАЦИЯ).

А.П.Горизонтовым и сотр., был проделан ряд опытов.

В качестве стресса применялась апробированная H.Selye (1936) модель нервно-мышечного напряжения. Иммобилизация животных на опе­рационном столе в течение 3-6 часов однократно. Через 3,6,9,12,24, 48 и 72 часа от начала иммобилизации крысы декапитировались, соби­ралась кровь. Извлекались бедро,тимус и селезенка для проведения количественного исследования клеточных популяций.

Периферическая кровь:

результаты изучения периферической крови показали, что 6-часовая

иммобилизация вызывает резко выраженный нейтрофилез, при котором

содержание нейтрофилов увеличивается в 6-7 раз через 6 и 9 часов

после начала воздействия. Через 24 часа число нейтрофилов резко

снижается и приближается к уровню нормы или близкому к нему, сох­раняясь в этих пределах и в дальнейшем. Число лимфоцитов через 6, 9 и 12 часов резко падает, возвращаясь к норме через 24 часа;

Костный мозг:

изучение клеточного состава костного мозга показало, что уже че­рез 3 часа от начала иммобилизации отмечается значительное увели­чение содержания лимфоцитов, сохраняющееся на протяжении 6-9 ча­сов. Вслед за этим число лимфоцитов резко падает и через 24 часа достигает уровня нормы, даже нижней ее границы. Число зрелых гра­нулоцитов в костном мозге в период между 3 и 9 часами убывало, возвращаясь к номе уже через 12-24 часа. Содержание бластных кле­ток гранулоцитарного ряда (миелобласт-миелоцит) в течение 24 часов колебалось в пределах доверительного интервала нормы и через 48 часов увеличивалось. Что касается эритроидных клеток костного моз­га, то закономерных изменений обнаружить не удалось, хотя по дан­ным некоторых исследователей число их подвергалось кратковременно­му увеличению или уменьшению. Однако сроки возникновения этих из­менений не совпадают, и величина их в основном была недостоверной.

В специальных опытах на мышах-гибридах изучали содержание кроветворных клеток (КОЕ) при 3 и 6-часовой иммобилизации (Ю.И.Зимин,1974). Результаты опытов показали, что при введении 10 клеток костного мозга интактных доноров в селезенку реципиен-

тов вырастает 14,2+0,9 колоний. В то же время после введения кле­ток костного мозга от мышей , подвергшихся иммобилизации число колоний в селезенке было 21,3+1,15 (Ю.И.Зимин, 1974). В других опытах с помощью того же метода, но с подсчетом содержания клеток в костном мозге бедренной кости было показано, что число КОЕ во всем мозге бедренной кости увеличивается через 12 часов от начала 6-часовой иммобилизации до 2779+192 при 2141+46,6 в контроле (А.П.Горизонтов и др., 1981).