Подтвержден также тот факт, что большие железосодержащие ядра ферритинов, подвергшихся деградации в лизосомах (см. п. 4.), не могут встраиваться в апоферритин в неизменном виде: белковые субъединицы не могут формировать оболочку вокруг минеральных ядер. Необходимо предварительное растворение ядра и синтез его в полости апоферритина de novo. Сходным образом происходит и обмен железа между двумя молекулами ферритина, например, между плазматическим ферритином, несущим железо от клеток ретикулоэндотелиальной системы, и ферритином печени.
4. Катаболизм ферритина
Как любому биологически активному веществу, участвующему в протекании окислительно-восстановительных процессов, ферритину для сохранения функциональной активности необходимо регулярное обновление белковой части. Ферритин из цитоплазмы поступает в лизосомы, где происходит протеолиз белковой оболочки и частичная деградация железосодержащего ядра. Образовавшиеся структуры носят название сидеросомального ферритина. Затем железо освобождается от связавших его хелаторов и постепенно заключается в новую, интактную молекулу апоферритина. Данное предположение подтверждается наличием в сидеросомах электрофоретически подвижных субъединиц, подвергшихся радикальному отщеплению N-концевых аминокислотных остатков и вследствие этого меньших по массе, являющихся аналогами цитоплазматических Н- и L-цепей [35].
В условиях избытка железа способность клеток синтезировать необходимое количество ферритина истощается. При этом частично железо так и остается в слабо структурированной форме хранения - сидеросомальном ферритине, а также подвергается дальнейшей деградации до нерастворимого гемосидерина. Название отражает источник содержащегося в нем железа - гемоглобин, но в гемосидерине железо находится не в форме гема. Гемосидерин представляет собой агрегат гидроокиси железа, соединенного с белками, гликозаминогликанами и липидами. При электронной микроскопии гемосидерин виден как нерегулярные массивные кластеры электронно-плотных частиц, большинство из которых окаймлены мембранами.
Гранулы гемосидерина распознаются антителами к ферритину, но их иммунореактивность значительно ниже, чем у цитозольного ферритина [36]. Эти данные подтверждают гипотезу, что гемосидерин - продукт деградации ферритина.
5. Регуляция биосинтеза ферритина
Механизмы регуляции биосинтеза ферритина интенсивно исследуются. Главным фактором, влияющим на метаболизм ферритина, является количество железа в организме. У животных и человека основным является посттранскрипционный механизм контроля. Механизм контроля трансляции был предложен после наблюдения, что в ответ на присутствие железа происходит увеличение количества ассоциированной с полисомами мРНК, при этом суммарное количество мРНК не возрастало, а уменьшалась фракция неактивной мРНК [37].
Секвенирование мРНК Н- и L-цепей ферритина показало наличие необычно длинных 5'-нетранслируемых областей (UTRs), размером соответственно 210 и 168 нуклеотидов [38]. С помощью компьютерного анализа было предсказано существование в пределах первых 75 нуклеотидов специфической стержне-петлевой структуры. Такая последовательность - железо-ответственный элемент (IRE, iron responsive element) - необходима для регуляции железом трансляции мРНК.
Первоначально предполагалось, что цитоплазматическая мРНК могла инактивироваться присоединением субъединицы ферритина, действующей как репрессор, а железо вызывало дерепрессию, инициируя сборку в 24-меры ферритина, способные затем инкорпорировать железо. Последующие работы подтвердили данное предположение, но репрессорным белком оказалась не субъединица ферритина, а цитозольный белок с молекулярной массой порядка 90 кДа, который специфически связывается с IRE с высокой аффинностью (Kd=10-10-10-11M). Этотбелокизвестенкак IRE-binding protein (IRE-BP), iron regulatory factor (IRF), ferritin repressor protein (FRP), P-90 или iron regulatory protein (IRP). Было установлено, что IRP является белком цикла Кребса - аконитазой [39]. Аконитаза содержит железосерный кластер [4Fe-4S], связывание железа в котором обратимо. В несвязанной форме [3Fe-4S] один из атомов железа в кластере замещается шпилькой мРНК, при этом аконитаза действует как репрессор трансляции. При повышении уровня железа в цитоплазме железосерный кластер принимает форму [4Fe-4S], шпилька мРНК вытесняется из кластера, аконитаза диссоциирует от мессенджера и начинается синтез субъединиц ферритина.
Важным фактом является то, что шпильки мРНК (IRE) свойственны не только для мРНК ферритина [40]. Аналогичные структуры, способные связываться с теми же IRP, обнаружены в 3'-нетранслируемой области мРНК клеточного рецептора трансферрина (TfR), 5'-UTR эритроид-специфической синтетазы дельта-аминолевулиновой кислоты (eALAS).
Железо регулирует экспрессию TfR в направлении, противоположном экспрессии ферритина: высокий уровень железа ведет к низкой экспрессии TfR, и наоборот. Связывание c IRP предохраняет мРНК TfR от деградации. Таким образом, когда существует необходимость в железе, синтезируется больше TfRs, что позволяет клеткам захватывать больше железа, и когда клетки насыщены железом, синтезируется больше ферритина для защиты от токсического действия.
Первые стадии биосинтеза гема, возможно, лимитирующие скорость процесса, катализирует eALAS. Как и для ферритина, связывание с IRP блокирует инициацию трансляции eALAS.
мРНК митохондриальной аконитазы также содержит один IRE в 5'-UTR, который связывает IRP, поэтому и синтез собственно аконитазы может регулироваться железом. Когда количество железа ограничено, аконитазная активность IRP и, возможно, митохондриальных ферментов увеличивается с последующим увеличением потребления цитрата. При избытке железа происходит обратное, с возможным увеличением аккумуляции клеточного цитрата. Очевидная прямая координация уровня цитрата и железа физиологически важна, так как цитрат - одна из главных клеточных железосвязывающих молекул, подобная буферной системе.
Помимо железа, синтез ферритина регулируется на различных уровнях многими другими веществами во время развития организма, клеточной дифференцировки, при воспалительных процессах [41]. Это могут быть различные гормоны (тироид-стимулирующий гормон, эстрогены), цитокины (интерлейкины 1 и 6), фактор некроза опухоли, инсулин, цАМФ, гем, оксид азота (II), перекись водорода.
6. Ферритин в циркуляторном русле
Первое прямое свидетельство присутствия ферритина в сыворотке крови получили Reissman и Dietrich в 1956 г [42]. Первоначально ферритин был найден в сыворотке пациентов с некрозом печени и перегрузкой железом, однако после развития чувствительного иммунорадиометрического анализа его удалось обнаружить и в нормальной сыворотке [43].
Внеклеточные ферритины, найденные в сыворотке и биологических жидкостях, составляют меньшую часть от общего ферритина. Плазматический ферритин имеет низкое содержание железа (0,02-0,07 мкг Fe на мкг белка в сравнении с более 0,7 мкг Fe на мкг белка в печени и селезенке).
Источник и механизм продукции плазматического ферритина до сих пор во многом неясен. Часть циркулирующего ферритина выделяется из разрушающихся тканей, например при циррозе печени, инфаркте миокарда. Однако наличие в молекуле специфически гликозилированных субъединиц и тонкая регуляция количества ферритина в крови в соответствии с уровнем железа в норме и при различных патологических процессах показывает, что главным источником плазматического ферритина является его активная секреция. В частности, секреция выполняется фагоцитами, осуществляющими деградацию гемоглобина. При этом ферритин выполняет функцию транспорта железа от клеток ретикулоэндотелиальной системы к гепатоцитам, синтезирующим гемоглобин de novo.
Места синтеза ферритина, подлежащего секреции, и тканевого ферритина также различны. Показано, что секреторный белок синтезируется на полирибосомах, связанных с мембранами эндоплазматического ретикулума, где осуществляется дальнейший процессинг молекулы, включая гликозилирование. Синтез ферритинов, секреция которых не предусмотрена, протекает на свободных цитоплазматических рибосомах [44].
Предположение, что секретируемые ферритины функционально активны, основано на идентификации специфических рецепторов на различных клеточных мембранах. Такие рецепторы были описаны на клетках печени, лимфоцитах и эритробластах человека. До настоящего времени неясно, сколько типов рецепторов существует, но главное очевидное различие найдено между ними на клетках печени и других типах клеток. Рецепторы печени обладают специфичностью с учетом соотношения Н- и L-субъединиц, в то время как лимфоцитарные рецепторы специфичны к Н-цепи.
Хотя многие тканевые изоферритины могут высвобождаться в плазму, обнаружены четкие различия в динамике циркуляции тканевого и плазматического ферритинов. Так, скорость удаления из плазмы тканевых ферритинов очень высока (период полувыведения Т1/2 составляет примерно 9 мин), в то время как количество инъецированного меченого плазматического ферритина уменьшалось на 50% лишь спустя 30 часов. В норме в плазме способны накапливаться изоформы L24 и гликозилированные молекулы, богатые L-субъединицами, но содержащие мало железа [45].