Смекни!
smekni.com

Обмен углеводов (стр. 2 из 6)

3. Пул глюкозы в организме, поступление глюкозы

в клетки

Преобладающим в количественном отношении моносахаридом, присутствующим во внутренней среде организма, является глюкоза. Ее содержание в крови относительно постоянно и является одной из констант гомеостаза. Содержание глюкозы в крови составляет 3,3 - 5,5 мМ/л или 80 - 100 мг/дл. Пул глюкозы, т.е. общее содержание свободной глюкозы в организме, составляет величину порядка 20 г. Из них 5 - 5,5 г содержится в крови, остальная глюкоза распределена в клетках и межклеточной жидкости. Из приведенных цифр следует, что концентрация глюкозы в клетках значительно ниже, чем в крови, что создает условия для поступления глюкозы из крови в клетки путем простой или облегченной диффузии.

Пул глюкозы в организме есть результат динамического равновесия процессов, обеспечивающих пополнение этого пула и процессов,сопровождающихся использованием глюкозы из пула для нужд органов тканей.

Пополнение пула глюкозы идет за счет следующих процессов:

а/ поступление глюкозы из кишечника;

б/ образование глюкозы из других моносахаридов, например, из галактозы или фруктозы;

в/ распад резервного гликогена в печени / гликогенез /;

г/ синтез глюкозы из неуглеводных соединений,т.е. глюконеогенез.

Основные направления использования глюкозы из пула:

а/ окислительный распад глюкозы / аэробное окисление до СО2 иН2О, анаэробное окисление до лактата и др./;

б/ синтез резервного гликогена;

в/ синтез липидов;

г/ синтез других моносахаридов или их производных;

д/ синтез заменимых аминокислот;

е/ синтез других азотсодержащих соединений, необходимых клеткам.

Транспорт глюкозы из крови или межклеточной жидкости в клетки идет по механизму облегченной диффузии, т.е. по градиенту концентрации с участием белка-переносчика. Эффективность работы механизма этого транспорта в клетках большинства органов и тканей зависит от инсулина. Инсулин увеличивает проницаемость наружных клеточных мембран для глюкозы, увеличивая количество белка-переносчика за счет дополнительного его поступления из цитозоля в мембраны . Основная масса клеток различных органов и тканей является в этом контексте инсулинзависимыми, однако по крайней мере в клетках трех типов эффективность переноса глюкозы через их наружные мембраны не зависит от инсулина, это эритроциты, гепатоциты и клетки нервной ткани. Эти ткани получили название инсулиннезависимых тканей. но я еще раз хочу подчеркнуть, что речь идет лишь о независимости транспорта глюкозы в эти клетки от инсулина и ни о чем более. Так, доказано, что и клетки мозга и гепатоциты имеют в составе своих наружных мембран рецепторы для инсулина.

Глюкоза, поступившая в клетку, подвергается в клетке единственному превращению - она фосфорилируется с участием АТФ:

В большинстве органов и тканей ферментом, катализирующим эту реакцию, является гексокиназа. Этот фермент обладает высоким сродством к глюкозе и способен ее фосфорилировать при низких концентрациях глюкозы.В гепатоцитах есть еще один фермент - глюкокиназа, который также может катализировать эту реакцию, но обладая меньшим сродством к глюкозе, он работает лишь в условиях высоких концентраций глюкозы в клетке и обычно принимает участие лишь в процессе синтеза гликогена в печени. Реакция, катализируемая гексокиназой, сопровождается большой потерей свободной энергии [ DG = - 5 ккал/моль ] и в условиях клетки является необратимой, а глюкозо-6-фосфат представляет собой активированную форму глюкозы. Существенным является то обстоятельство, что наружная клеточная мембрана непроницаема для гл-6-ф и в результате фосфорилирования глюкоза как бы "запирается" в клетке. С другой стороны, быстрое превращение глюкозы в гл-6-ф позволяет поддерживать крайне низкую концентрацию глюкозы в клетке, сохраняя тем самым градиент концентрации глюкозы между внеклеточной жидкостью и внутриклеточной средой.

4. Синтез и расщепление гликогена

При повышении концентрации глюкозы в крови, например, в результате ее всасывания в кишечнике при пищеварении, увеличивается поступление глюкозы в клетки и по крайней мере часть этой глюкозы может быть использована для синтеза гликогена. Накопление резерва углеводов в клетках в виде гликогена имеет определенные преимущества перед накоплением глюкозы, так как не сопровождается повышением внутриклеточного осмотического давления. Вместе с тем, при недостатке глюкозы гликоген легко расщепляется до глюкозы или ее фосфорных эфиров, а образовавшиеся мономерные единицы используются клетками с энергетическими или пластическими целями.

4.1. Синтез гликогена

Поступившая в клетки глюкоза подвергается фосфорилированию при участии ферментов гексокиназы или глюкокиназы:

Затем гл-1-ф взаимодействует с уридинтрифосфатам с образованием УДФ-глюкозы при участии фермента УДФ-глюкозопирофосфорилазы [ или глюкозо-1-фосфатуридилтрансферазы ]:

Пирофосфат сразу расщепляется на два остатка фосфорной кислоты при участии фермента пирофосфатазы. Эта реакция сопровождается потерей энергии порядка 7 ккал/моль, в результате чего реакция образования УДФ-глюкозы становится необратимой - термодинамический контроль направления процесса.

На следующем этапе остаток глюкозы из УДФ-глюкозы переносится на синтезирующуюся молекулу гликогена при участии фермента гликогенсинтетазы: и молекула гликогена удлинняется на один остаток глюкозы. Фермент гликогенсинтетаза способна присоединить остаток глюкозы из УДФглюкозы к строящейся молекуле гликогена только путем образования a -1,4-гликозидной связи. Следовательно, при участии только одного этого фермента может быть синтезирован лишь линейный полимер. Гликоген же - полимер разветвленный и имеющиеся в молекуле разветвления формируются с участием другого фермента: амило- 1,4--> 1,6 - гликозилтрансферазы. Этот фермент, называемый иначе ферментом ветвления, переносит фрагмент из 5 - 7 мономерных звеньев с конца линейного участка синтезируемого полисахарида ближе к его средине, причем этот фрагмент присоединяется к полимерной цепи за счет образования a - 1,6-гликозидной связи:

Следует заметить, что по другим данным отщепляемый фрагмент, состоящий минимум из 6 глюкозных остатков, переносится на соседнюю цепочку строящегося разветвленного полисахарида. В любом случае в дальнейшем обе цепи удлинняются за счет действия гликогенсинтетазы, а новые разветвления формируются с участием фермента ветвления.

Синтез гликогена идет во всех органах и тканях, однако наибольшее содержание наблюдается в печени [ от 2 до 5-6% общей массы органа ] и в мышцах [ до 1 % от их массы ]. Включение 1 остатка глюкозы в молекулу гликогена сопровождается использованием 2 макроэргических эквивалентов ( 1 АТФ и 1 УТФ ), так что синтез гликогена в клетках может идти лишь при достаточной энергообеспеченности клеток.

4.2. Мобилизация гликогена

Гликоген, как резерв глюкозы, накапливается в клетках во время пищеварения и расходуется в постабсорбционном периоде. Расщепление гликогена в печени или его мобилизация осуществляется при участии фермента гликогенфосфоррилазы часто называемой просто фосфорилазой. Этот фермент катализирует фосфоролитическое расщепление a-1,4-гликозидных связей концевых остатков глюкозы полимера:

Для расщепления молекулы в районе разветвлений необходимы два дополнительных фермента: так называемый дебранчинг (деветвящий) фермент и амило-1,6-гликозидаза, причем в результате действия последнего фермента в клетках образуется свободная глюкоза, которая может или покинуть клетку, или подвергнуться фосфорилированию.

Гл-1-ф в клетках изомеризуется с участием фосфоглюкомутазы в гл-6-ф. Дальнейшая судьба гл-6-фосфата определяется наличием или отсутствием в клетках фермента глюкозо-6-фосфатазы. Если фермент присутствует в клетке, он катализирует гидролитическое отщепление от гл-6-фосфата остатка фосфорной кислоты с образованием свободной глюкозы: которая может проникать через наружную клеточную мембрану и поступать в кровяное русло. Если же глюкозо-6-фосфатазы в клетках нет, то дефосфорилирования глюкозы не происходит и глюкозный остаток может быть утилизирован только данной конкретной клеткой. Заметим, что расщепление гликогена до глюкозы не нуждается в дополнительном притоке энергии.

В большинстве органов и тканей человека глюкозо-6-фосфатаза отсутствует, поэтому запасенный в них гликоген используется лишь для собственных нужд. Типичным представителем таких тканей является мышечная ткань. Глюкозо-6-фосфатаза имеется лишь в печени, почках и кишечнике, но наиболее существенным является наличие фермента в печени ( точнее, в гепатоцитах ), т.к. этот орган выполняет роль своего рода буфера, поглощающего глюкозу при повышении ее содержания в крови и поставляющего глюкозу в кровь, когда концентрация глюкозы в крови начинает падать.

4.3. Регуляция процессов синтеза и распада гликогена

Сопоставив метаболические пути синтеза и мобилизации гликогена, мы увидим, что они различны:

Это обстоятельство дает возможность раздельно регулировать обсуждаемые процессы. Регуляция осуществляется на уровне двух ферментов: гликогенсинтетазы, участвующей в синтезе гликогена, и фосфорилазы, катализирующей расщепление гликогена.

Основным механизмом регуляции активности этих ферментов является их ковалентная модификация путем фосфорилирования-дефосфорилирования. Фосорилированная фосфорилаза или фосфорилаза "a" высокоактивна, в то же время фосфорилированная гликогенсинтетаза или синтетаза "b" неактивна. Таким образом, если оба фермента находятся в фосфорилированной форме, в клетке идет расщепление гликогена с образованием глюкозы. В дефосфорилированном состоянии, наоборот, неактивна фосфорилаза ( в форме "b") и активна гликогенсинтетаза ( в форме "a" ), в этой ситуации в клетке идет синтез гликогена из глюкозы.