Смекни!
smekni.com

Вирусы (стр. 2 из 5)

Какова вероятность встречи с вирусами? С возбудителями гриппа, кори, свинки, герпеса, цитомегалии, гастроэнтерита и различных ОРЗ контакты практически неизбежны (90 00%); с вирусами вызывающими гепатит, краснуху, бешенство, везикулярный стоматит, полиомиелит, миокардиты, встреч можно избежать. Так или иначе, но человек на протяжении всей жизни подвергается опасности заразиться и заболеть какой ибо вирусной инфекцией, хотя существует определённая возрастная чувствительность к вирусам.

Ещё не родившемуся плоду человека грозят два вируса краснухи и цитомегалии, которые передаются внутриутробно и очень опасны. Новорождённые и грудные младенцы ещё более уязвимы: им угрожают вирусы герпеса 1го и 2го типа и вирус гепатита. Также подстерегают их новые опасности грипп, различные ОРЗ, полиомиелит, острые гастроэнтериты.

Итак, вирусы являются постоянными спутниками человека от рождения вплоть до глубокой старости. Считается, что при средней продолжительности жизни 70 лет около 7 лет человек болеет вирусными заболеваниями. Подсчитано, что в среднем человек ежегодно сталкивается с 2 и более вирусными инфекциями, а всего за жизнь вирусы до 200 раз проникают в его организм. К счастью, далеко не все встречи заканчиваются болезнями, так как в процессе эволюции человеческий организм научился успешно справляться со многими вирусами.

1.4Полезные вирусы.

Существуют и полезные вирусы. Сначала были выделены и испытаны вирусы пожиратели бактерий (бактериофаги). Однако последовали неудачи. Это было связано с тем, что в организме человека бактериофаги действовали на бактерии не так активно, как в пробирке. Кроме того, бактерии очень быстро приспосабливались к бактериофагам и становились не чувствительными к их действию. После открытия антибиотиков бактериофаги как лекарство отступили на задний план.

Полезными оказались вирусы поражающие позвоночных животных и насекомых. В 50годах 20 века в Австралии остро встала проблема с дикими кроликами, которые быстрей саранчи уничтожали посевы сельскохозяйственных культур и приносили огромный экономический ущерб. Для борьбы с ними использовали вирус миксоматоза. Вирус полиэдроза и гранулеза уничтожает гусениц и жуков, которые поедают полезные листья.

1.5Лечение вирусных инфекций.

Существуют три основных способа борьбы с вирусными заболеваниями вакцинация, применение интерферона и химиотерапия. Каждый из них действует по своему: вакцины включают систему иммунитета, интерферон подавляет размножение вирусов, проникших внутрь клеток, а химиопрепараты вступают с вирусами в единоборство и приостанавливают начавшееся заболевание.

Первый способ вакцинация . Суть его сводится к простой формуле "Бей врага его же оружием". Вирус здесь вступает против вируса. В 1796 году английский врач Э. Дженнер попробовал привить оспу коров (вакцину) здоровым людям, после этой процедуры они не заболевали оспой. Тогда от оспы ежегодно умирали миллионы людей, и открытие Дженнера было чрезвычайно важным.

В 1885 году французский учёный Л. Пастер изобрёл вакцину против бешенства. После открытия вирусов вакцины из убитых или ослабленных вирусов стали в промышленном масштабе. При введении в организм такие вирусы не вызывают заболевания, но создают активный иммунитет к данному вирусу.

Второй способ химиотерапия . В отличие от вакцинации, её конечной целью является не предупреждение, а лечение. Основная трудность, с которой сталкиваются при разработке химиотерапии вирусных инфекций, заключается в том, что вирусы размножаются внутри клеток, используя их системы, в силу чего любое воздействие на синтез вирусов приводит к нарушению обмена веществ клеток. В связи с этим большинство препаратов, подавляющих размножение вирусов, параллельно угнетают жизнедеятельность клетки хозяина. Поэтому широко известные антибиотики и антиметаболиты, обладающие выраженной способностью подавлять развитие вирусов в пробирке, малоэффективны в условиях организма.

Третий способ интерферон . В отличие от вакцинации и от химиопрепаратов, интерферон обладает универсально широким спектром действия и активен практически против всех вирусов, он действует по принципу стоп сигнала и подавляет размножение вирусов, уже проникших внутрь клеток. Ряд факторов показывает, что, если интерферон вырабатывается организмом плохо, вирусные заболевания протекают тяжелее. Клинические испытания интерферона показали, что он активен при острых респираторных заболеваниях, особенно вызываемых риновирусами, то есть как раз в тех случаях, когда вакцинация мало перспективна.

2.Бактерии.

Бактерии широко распространённая в природе группа одноклеточных микроорганизмов с примитивной формой клеточной организации. Интенсивное изучение биологических свойств бактерий и их роли в биосфере началось в середине 19 в., когда появились работы французского учёного Л. Пастера, немецкого учёного Р. Коха и английского учёного Д. Листера.

Большинство бактерий не имеют хлорофилла, то есть они не используют солнечную энергию в процессе обмена веществ, а получают энергию в результате химических превращений неорганических или органических соединений, имеющихся в среде их обитания. Бактерии широко распространены в природе: их находят в почве, в воде, в растениях, в организме человека и животных. Они могут существовать в самых разных условиях, часто неблагоприятных для жизни других организмов. Бактерии играют огромную роль в формировании биосферы, в поддержании жизни на нашей планеты, участвуя в круговороте энергии и веществ в природе.

Среди бактерий имеется относительно небольшое видов, способных вызывать болезни человека, животных и растений. Потенциальная способность бактерий вызывать инфекционные заболевания называется болезнетворностью, или патогенностью. Некоторые бактерии являются условно патогенными, так как их болезнетворность зависит от ряда условий, в первую очередь от сопротивляемости организма, в котором эти бактерии находятся.

2.1 Строение бактерий.

По форме бактерии делятся на три группы: шаровидные (кокки), палочковидные (бактерии и бациллы) и извитые (вибрионы, спириллы). Размеры палочковидных бактерий могут быть от 1 до 8 микрометров (мкм) в длину и от 0,5 до 2 мкм в ширину; средний диаметр шаровидных 0,5мкм (1 мкм равен тысячной доле миллиметра). Основные структурные элементы бактериальной клетки: оболочка, цитоплазма, нуклеоид (рис. 4). Содержимое её телапротоплазма представляет собой желеобразный, вязкий раствор, в котором растворены различные органические и неорганические соединения и находится множество мелких гранул.

Протоплазма, окруженная тонкой эластичной мембраной, образует протопласт. Толщина мембраны 7 0 нанометров (1 нм равен миллионной доли миллиметра). Её основной компонент сложные вещества, состоящие из белков и жиров. Цитоплазматическая мембрана выполняет функцию молекулярного "сита": пропуская воду и небольшие молекулы некоторых жирорастворимых веществ, она не пропускает другие низкомолекулярные соединения, что поддерживает стабильность химического состава протоплазмы и защищает бактериальную клетку от попадания в неё вредных веществ.

Снаружи цитоплазматическая мембрана окружена клеточной стенкой, обеспечивающей постоянство форы бактерии. Эта стенка толще мембраны (10 5 нм) и значительно прочнее её. Она имеет эластичные поры диаметром 1 нм, через которые свободно протекают относительно крупные молекулы. Целостность клеточной стенки обеспечивает нормальную жизнедеятельность бактерии. Её ослабление или разрушение приводит к проникновению в бактериальную клетку воды из окружающей среды, её набуханию, а затем к разрыву цитоплазматической мембраны и вытеканию содержимого протоплазмы. Этот процесс разрушения бактерии называется лизисом. Основной компонент стенки сложное соединение пептидогликан, молекулы которого связаны друг с другом с помощью белковых мостиков и образуют полимерную структуру.

Кроме цитоплазматической мембраны и клеточной стенки, многие бактерии окружены капсулой толщиной 0,2 мкм, представляющей собой относительно плотный, желатинообразный материал, непосредственно прилегающей к клеточной стенки. Главный химический компонент капсулы полисахарид. Есть основание считать, что капсула защищает клетку от действия антибактериальных агентов, способных повредить её стенку. У некоторых патогенных бактерий (возбудителей сибирской язвы и чумы) капсула содержит вещества, защищающие бактериальную клетку от фагоцитоза. Следовательно, капсулу у некоторых бактерий можно рассматривать как один из факторов, определяющих их болезнетворность. В отличие от клеток высших организмов в бактериальной клетке отсутствует дифференцируемое ядро, отделённое от цитоплазмы ядерной мембраной. Его функции осуществляет находящийся в протоплазме нуклеоид, представляющий собой замкнутую в кольцо двунитчатую спираль молекулу дезоксирибонуклеиновой кислоты ДНК, свёрнутую в виде клубка. Функция молекулы ДНК бактерий аналогична функции хромосомы клеток высших организмов, то есть в ней сосредоточена генетическая информация данной бактерии. Ядерное вещество легко обнаруживается при электронной микроскопии ультратонких срезов бактерий. В цитоплазме бактерии находится до 10 тысяч рибосом, представляющих собой мелкие гранулы диаметром около 20 нм, с помощью которых в бактериальной клетке осуществляется синтез белка. В ней содержатся также различные включения (жиры, крахмал, гликоген, сера)запас питательных веществ, используемых бактерией.

Многие бактерии способны активно двигаться с помощью жгутиков, своеобразных органов движения. Число жгутиков на поверхности клетки колеблется от 1 до нескольких десятков. Способность бактерий к активному движению, вероятно, помогает им быстрее поглощать вещества в жидкой среде обитания. Есть доказательства, что многие бактерии двигаются в сторону тех участков среды, где имеются наиболее благоприятные условия для их существования, и удаляются от участков, в которых находятся вещества, вредно действующие на них. Подвижные бактерии нуждаются в кислороде , двигаются к поверхности среды месту наивысшей концентрации растворимого кислорода. Можно предположить, что активное движение помогает патогенным бактериям проникать через вязкие, слизистые секреты, эпителиальные барьеры и распространяться в жидкостях и тканях организма.