2.2Размножение бактерий.
Большинство бактерий размножаются путём деления, которому предшествует рост бактерии, то есть увеличение массы её клетки. Обычно палочковидные бактерии в длину увеличиваются в двое, и после достижения ими определённого размера посередине клетки возникает поперечная перегородка, состоящая из цитоплазматической мембраны и клеточной стенки. Такой способ деления называется поперечным. Образовавшиеся дочерние клетки по своим свойствам полностью подобны материнской клетке, из которой они возникли.
Для того чтобы бактерии могли расти и размножатся, среда их обитания должна содержать необходимые источники углерода, азота, энергии, определённой солевой набор, иметь оптимальную температуру. Для большинства патогенных бактерий она равна 37я5о . В лабораторных условиях для выращивания бактерий используют искусственные субстраты, так называемые питательные среды. Скорость размножения бактерий в этих средах очень велика. Примерно каждые 20 минут бактерия делится, давая две дочерние клетки. Следовательно, из одной клетки, культивируемой в хорошей питательной среде, через 10 часов образуется 1 млд. потомков. Если бы процесс размножения в питательной среде не был ограничен, то через 24 часа число потомков одной бактерии равнялось 10я521клеток, а их масса составила бы примерно 4000 тонн. В действительности же в питательной среде высокая скорость деления клеток наблюдается лишь небольшой период времени с момента внесения в неё бактерии. Это происходит потому, что очень быстро истощаются питательные вещества среды и в ней накапливаются продукты обмена, неблагоприятно действующие на бактерии. Скорость размножения патогенных бактерий в организме значительно меньше, чем в искусственной питательной среде.
2.3 Физиология бактерий.
По химическому составу бактерии не отличаются от клеток других организмов. Бактериальная клетка содержит 70 5% воды. Около 90% сухого остатка составляют высокомолекулярные соединения: нуклеиновые кислоты (10%), белки (40%), полисахариды (15%), пептидогликан (10%) и липиды (15%); остальные 10% приходятся на моносахара, аминокислоты, азотистые основания, неорганические соли и другие низкомолекулярные соединения. Во всех процессах жизнедеятельность бактерий, как и других организмов, участвуют многочисленные ферменты. Одни из них (эндоферменты) функционируют только внутри клетки, обеспечивая процессы синтеза, дыхания и тому подобное. Другие (экзоферменты) выделяются бактериями в окружающую среду. Необходимые бактериям высокомолекулярные соединения синтезируются из небольших молекул, проникающих в клетку через цитоплазматическую. мембрану Белки, полисахариды, липиды могут быть использованы бактерией как источник питания лишь после их расщепления экзоферментамидо аминокислот, моносахаров и др.
Для нормальной жизнедеятельности бактерия должна быть обеспечена источниками углерода и азота. Одни виды бактерий (афтотрофы) используют неорганический углерод, другие (гетеротрофы), в число которых входят и патогенные бактерии, используют органические соединения. Гетеротрофные бактерии в свою очередь разделяются на сапрофитов, питающихся органическими соединениями внешней среды, и паразитов, живущих за счёт другого организма. Различные бактерии неодинаково относятся к наличию или отсутствию свободного кислорода. По этому признаку они делятся на три группы: аэробы, анаэробы и факультативные анаэробы. Строгие аэробы, например синегнойная палочка, могут развиваться лишь при наличии свободного кислорода. Анаэробы, например возбудители газовой гангрены, столбняка, развиваются без доступа свободного кислорода, присутствие которого угнетает их жизнедеятельность. Наконец, факультативные анаэробы, например возбудители кишечных инфекций, развиваются как в кислородной, так и в бескислородной среде. Аэробность или анаэробность бактерий обусловливается способом получения ими энергии, необходимой для обеспечения процессов жизнедеятельности. Некоторые бактерии (фотосинтезирующие) способны, подобно растениям, использовать непосредственно энергию солнечного света. остальные (хемосинтезирующие) получают энергию в ходе различных химических реакций. Существуют бактерии (хемоафтотрофы), окисляющие неорганические вещества (аммиак, соединения серы и железа и др.). Но для большинства бактерий источником энергии служат превращения органических соединений: углеводов, белков, жиров и др. Аэробы используют реакции биологического окисления с участием свободного кислорода (дыхание), в результате которых органические соединения окисляются до углекислого газа и воды. Анаэробные получают энергию при расщеплении органических соединений без участия свободного кислорода. Такой процесс называется брожением. При брожении, кроме углекислого газа, образуются различные соединения, например спирты, ацетон и др. В процессе жизнедеятельности бактерии образуют биологически активные вещества ферменты, антибиотики, пигменты, летучие ароматические соединения, токсины и др.
2.4 Антибактериальные химиотерапевтические агенты.
Химические соединения, используемые для дезинфекции, хотя и обладают высокой антибактериальной активностью, не могут из а их токсичности применяться в лечебных целях. Для этого пригодны антибактериальные химиотерапевтические средства. Они способны убивать бактерий или угнетать их жизнедеятельность, не оказывая при определённых дозах токсического влияния на ткани или организм в целом, то есть действие их должно быть изобретательным, направленным против бактерии или другого микроорганизма.
Кроме химических соединений, мощными антибактериальными средствами являютсяя1 антибиотики химиотерапевтические препараты естественного происхождения, синтезируемые микроорганизмами. Теоретические основы химиотерапии и вопросы её практического использования при лечении инфекционных заболеваний были разработаны в начале века немецким учёным П. Эрлихом, который открыл органические соединения мышьяка, активные при лечении сифилиса. Однако долгие годы не удавалось найти химиотерапевтические средства для лечения для лечения бактериальных инфекций. Дальнейшее развитие химиотерапии связано с открытием сульфаниламидов. Применение сульфаниламидов не только обогатило медицину новыми по тому времени химиотерапевтическими средствами, но и вызвало к жизни новое направление поиска антибактериальных химиотерапевтических средств. Это направление возникло в результате изучения механизма действия сульфаниламидов на бактериальную клетку. Было установлено, что по химической структуре сульфаниламид подобен парааминобензойной кислоте одному из важных промежуточных продуктов (метаболитов), участвующих в синтезе нуклеиновых кислот. Из а химического подобия сульфаниламид действует как антиметаболит парааминобензойной кислоты: включаясь вместо неё в биохимические процессы, но не заменяя её, сульфаниламид нарушает синтез нуклеиновых кислот в бактериальной клетке. Исходя из этих данных, было сформулировано положение, что среди антиметаболитов других биохимических процессов окажутся лечащие антибактериальные средства.
Однако проблема получения новых лекарственных средств против бактериальных инфекций, принцип действия которых основан на конкуренции метаболита с важным для клетки метаболитом, оказалось значительно сложней, чем предполагалось. Это связано с тем, что синтезированные антиметаболиты подавали обмен веществ не только у бактерий, но и в тканях организма. Таким образом, проблема свелась к поиску реакций обмена веществ, специфичных для бактерий и отсутствующих в клетках организма человека или животного.
Биохимические реакции, присущи лишь бактериям, были обнаружены в процессе синтеза клеточной стенки, в частности при образовании пептидогликана. Некоторые антибиотики (пенициллин, циклосерин) эффективные как антибактериальные средства, воздействуют на процесс формирования клеточной стенки, нарушая синтез пептидогликана, входящего в его состав, что приводит к лизису бактерий. Другие бактерии тетрациклин, левомицетин, стрептомицин и другие способны нарушать синтез белков в бактериальных клетках. Первым препаратом этой группы, нашедшим применение в клинике, был стрептомицин. Оказалось, что он способен изобретательно объединяться с рибосомами клеток организма хозяина. В результате "точность" рибосом бактерии в процессе синтеза белка нарушается, что приводит к "порче" синтезируемых белков и гибели бактерии. Неомицин, канамицин, левомицетин и эритромицин также взаимодействуют с рибосомами бактериальной клетки. Тетрациклин нарушает присоединение информационной РНК к рибосомам. Лечащее действие упомянутых антибиотиков определяется их специфичностью, то есть относительно низкой способностью влиять на эти же процессы в клетках высших организмов.
2.5 Устойчивость бактерий к факторам окружающей среды.
На жизнедеятельность бактерий влияют температура, влажность, ультрафиолетовое излучение. К низким температурам бактерии устойчивы, некоторые выживают даже при 90 , а споры при 53 . К высоким температурам бактерии высокочувствительные. Не спорообразующие бактерии погибают при температуре 60, спорообразующие при прогреве выше 100. Разные виды бактерий по разному переносят высушивание: одни (например гонококки) очень быстро погибают, другие в этих же условиях выживают. Так, палочка дизентерии при высушивании остаётся жизнеспособной 7 суток, дифтерии30 суток, брюшного тифа70 суток, туберкулёза90 суток, споры бацилл сибирской язвы до 10 лет.