Смекни!
smekni.com

Липидный эпидермальный барьер (стр. 2 из 3)

Интересы для медицины

Рисунок 1. Методы трансдермальной доставки лекарств. Рисунок из (4).

Методы трансдермальной доставки, применяемые в данное время:

Извилистый» путь трансдермальной диффузии может быть облегчен с помощью химических энхансеров — веществ, сравнительно легко преодолевающих липидный барьер и «увлекающих» за собой молекулы доставляемого лекарства. Примером химических энхансеров могут быть липофильные ингредиенты (жирные кислоты, спирты), гидрофильные вещества (гликоли), поверхностно-активные вещества;

Низковольтный ионофорез облегчает проникновение веществ трансфолликулярным путем — через волосяные фолликулы и протоки потовых желез.

Высоковольтная электропорация временно дестабилизирует липидные бислои, «приоткрывая» дверь доставляемому веществу. Сонофорез (ультразвук) дополнительно может увеличить эффективность путей переноса А и В.

Микроиглы и термопорация создают в коже отверстия микронного размера, через которые может осуществляться транспорт. Из-за малости отверстий, эти процедуры безболезненны, а сами отверстия очень быстро затягиваются.

Биологический мир буквально наполнен наночастицами — это ферменты, молекулы ДНК и РНК, рибосомы, клеточные везикулы, вирусы и пр. Отличительной особенностью таких объектов является их способность к агрегации и самоорганизации. Это свойство активно используется при создании искусственных конструкций, имитирующих реальные биологические структуры. Яркий пример представляют собой различные однокомпонентные и мультикомпонентные липосомы, которые способны при определенных условиях формироваться из раствора смеси липидов. Часто на практике используют и уже существующие в природе биологические наночастицы. Например, различные вирусы активно применяют для генной модификации (трансфекции) клеток. Показано, что аденовирусы с подавленной системой репликации могут быть эффективно использованы и для местной неинвазивной вакцинации через кожу (доставке антигенов к клеткам Лангерганса, присутствующим в коже).

Рисунок 2. 1 — липосома и аденовирус; 2 — полимерная наноструктура; 3 — дендример; 4 — углеродная нанотрубка. Рисунок из (4).

Также к ним относят липидные нанотрубки, наночастицы и наноэмульсии, циклические пептиды, хитозаны, наночастицы на основе нуклеиновых кислот.

Полимерные материалы обладают рядом преимуществ, определяющих эффективность их применения в технологиях доставки, — биосовместимость, способность к биодеградации, функциональная совместимость. Типичными соединениями, которые представляют основу для создания ПнЧ, являются полимолочная и полигликолевая кислоты, полиэтиленгликоль (ПЭГ), поликапралактон и др., а также их различные сополимеры. ПЭГ часто используют для повышения стабильности различных молекулярных переносчиков. Например, липосомы, покрытые ПЭГ («стелс-липосомы»), по сравнению с обычными, менее подвержены биодеградации, в результате чего обладают заметным пролонгированным действием.

Дендримеры являются уникальным классом полимеров с сильно разветвлённой структурой. При этом их размер и форма могут быть очень точно заданы при химическом синтезе. Дендримеры получают из мономеров, проводя последовательные конвергентную и дивергентную полимеризации (в том числе используя методы пептидного синтеза). Типичными «мономерами», используемыми в синтезе дендримеров, являются полиамидоамин (ПАМАМ) и аминокислота лизин. «Целевые» молекулы связываются с дендримерами либо путём образования комплексов с их поверхностью, либо встраиваясь глубоко между их отдельными цепями. Контролируемые размеры и свойства поверхности, а также стабильность дендримеров делают их весьма перспективными для использования в качестве переносчиков. На животных моделях показана эффективность их применения для трансдермальной доставки ряда препаратов.

Нанотрубки и фуллерены являются одними из самых «узнаваемых» наноструктур — практически ни один популярный текст про нанотехнологии не обходится без их изображений. За открытие этой новой формы существования углерода Р. Керл, Р. Смолли и Г. Крото в 1996 г. были удостоены Нобелевской премии по химии. Эти структуры, образованные только атомами углерода, сегодня в промышленных масштабах получают термическим распылением углеродсодержащей сажи в атмосфере инертного газа при пониженном давлении в присутствии катализатора. Нанотрубки обладают повышенным сродством к липидным структурам; при этом они способны образовывать стабильные комплексы с пептидами и ДНК-олигонуклеотидами, и даже инкапсулировать эти молекулы. Это определяет их применение в области создания эффективных систем доставки вакцин и генетического материала.

Неорганические наночастицы. К этому классу обычно относят наноструктуры, полученные на основании оксида кремния, а также различных металлов (золото, серебро, платина). При этом часто такая наночастица имеет кремниевое ядро и внешнюю оболочку, сформированную атомами металла. Использование металлов позволяет создавать переносчики, обладающие рядом уникальных свойств. Так, их активность (и в частности, высвобождение терапевтического агента) может быть модулирована термическим воздействием (инфракрасное излучение), а также изменением магнитного поля (возможность адресной доставки). При этом показано, что металлические наночастицы могут эффективно проникать вглубь эпидермиса.

Использование описанных выше наночастиц в медицине позволит не только эффективно доставлять биологически активные молекулы сквозь различные барьеры организма, которые они не способны преодолевать самостоятельно (кожный, гематоэнцефалический), но и существенно изменять характер действия препарата. Например, трансдермальная доставка, по сравнению с доставкой через кровяное русло, позволяет избежать нежелательных побочных эффектов, снизить эффективную дозу препарата за счет существенного повышения его локальной концентрации. Кроме того, было показано, что у терапевтических молекул, доставляемых в организм с помощью наночастиц, меняется фармакокинетика. Если для препаратов, попадающих в организм перорально или в результате инъекции, увеличение концентрации во времени описывается характерной кинетической кривой первого порядка (концентрация экспоненциально увеличивается во времени), то в случае использования наночастиц наблюдается идеальная временная зависимость нулевого порядка (равномерное увеличение концентрации препарата во времени). Это позволяет более точно планировать дозировки препарата и пролонгировать его действие.

Клинические проявления

Псориаз

Псориаз - одно из самых часто встречающихся хронических кожных заболеваний и одно из самых загадочных. Несмотря на большие успехи в изучении псориаза, причина его по-прежнему остается неизвестной. Частота заболевания псориазом в разных странах варьируется от 0,1 до 7%. В России им страдает около 2% населения. Долгое время считалось, что псориаз является одной из форм проказы, и лишь к концу XIX столетия была установлена его абсолютная самостоятельность. Псориаз сопровождается появлением на ней ярко-розовых высыпаний с обильным шелушением на их поверхности. Обычно очаги псориаза возникают на локтях и на коленях. На этих местах высыпания могут сохраняться даже тогда, когда в результате лечения они исчезают на других участках кожи. Помимо локтей и коленей в процесс очень часто вовлекается волосистая часть головы. При этом волосы не изменяются и не выпадают.

Суть псориаза состоит в том, что клетки кожи больного начинают созревать и, соответственно, отмирать гораздо быстрее, чем это происходит у здорового человека. Так, если нормальный цикл созревания клеток поверхностных участков кожи составляет от 24 до 28 дней, то при псориазе это время сокращается до 4-5 дней. Изменения в состоянии кожи обычно сопровождаются нарушением кальциевого обмена в организме. В частности, у больных псориазом отмечается снижение содержания витамина D. Провоцирующими моментами могут являться нервно-психические факторы (стресс), травмы кожи, применение некоторых медикаментов (чаще антибиотиков), злоупотребление алкоголем, инфекционные заболевания (вызванные стрептококком, вирусами) и др.

Изменения иммунной системы при псориазе выявлены как на клеточном, так и на гуморальном уровне и заключаются в изменении содержания иммуноглобулинов основных классов, циркулирующих иммунных комплексов, пула лимфоцитов в периферической крови, В- и Т-популяций и субпопуляций лимфоцитов, клеток-киллеров, фагоцитарной активности сегментоядерных лейкоцитов.

Считается, что первичные изменения при псориазе происходят на уровне клеток как дермального слоя, так и эпидермиса. Нарушения регуляции в клетках дермы вызывают избыточную пролиферацию в основном нормального эпидермиса. Гиперпролиферация кератиноцитов приводит к секреции цитокинов и эйкозаноидов, которые обостряют кожное воспаление. В очагах поражения эпидермиса клетки, презентирующие антиген, продуцируют интерлейкин-1 (ИЛ-1). Вероятно, ИЛ-1 идентичен фактору активации Т-лимфоцитов эпидермиса (ETAF), который продуцируется кератиноцитами и активирует лимфоциты тимуса. ИЛ-1 обусловливает хемотаксис Т-лимфоцитов и за счет стимулирования их миграции в эпидермис может отвечать за инфильтрацию эпидермиса этими клетками. Интерлейкины и интерфероны, продуцируемые Т-лимфоцитами, сами могут быть медиаторами в процессах гиперпролиферации кератиноцитов, а также медиаторами воспаления и таким образом способствуют поддержанию порочного круга, который определяет хронический характер псориаза. (7)