CD1b молекулы были первоначально найдены в зрелых фаголизосомах. Как ранее было показано, созревание фагосом сопровождается потерей жизнеспособности микобактериями, поэтому эти фаголизосомы скорее всего состоят из нежизнеспособных микобактерий. Дальнейшие эксперименты показали, что зараженные клетки хозяина отщепляют гликолипиды, которые могут быть поглощены дендритными клетками, лежащими в их окрестности. Данные открытия объясняют транспорт антигенных гликолипидов из макрофагов в ДК, или из главных хозяйских клеток к главным АПК, экспрессирующим CD1 молекулы, в эксперименте invitro. Предварительные данные свидетельствуют, что внутриклеточные везикулы различных размеров, такие как экзосомы и апоптические пузырьки, принимают участие в данном транспорте. Во время микобактериальной инфекции экспрессия на поверхности молекул МНС первого и второго класса и CD1b нерегулируема.
4.4 Рецептор для транспорта АГ
Маннозо-мембраные рецепторы (PPR) играют роль в понимании (распознавании) и презентации очищенного LAM с помощью CD1b. Этот R был идентифицирован в ранних эндосомах, но не в микобактериальных фагосомах, что доказывает его участие в распознавании чистых гликолипидов. РРRCD14 связывает не только липополисахариды грам "-" бактерий, но также некоторые микобактериальные гликолипиды. Этот R путешествует через фагосомы и поздние эндосомы-лизосомы зараженных микобактериями макрофагов. Отсюда следует, что CD14 может принимать участие в транспорте гликолипидов из фагосом в другие внутриклеточные компартменты. Так как CD14 экспрессируется только на макрофагах, то дендритные клетки, несущие CD1 молекулу, должны использовать другие R, для транспорта гликолипида. Предполагается, что гликолипиды транспортируются из зараженных макрофагов в незараженные ДК для презентации, а также, что CD14 может принимать участие в транслокациях гликолипида внутри макрофага. Как было показано для LAM, гликолипиды могут встраиваться в мембрану хозяйской клетки и мигрировать вдоль фосфолипидного бислоя. В фагосомах CD1 может принимать гликолипиды из депо. Здесь загрузка CD1а и CD1с (но не CD1b) независима от низкого рH. Расщепленные микобактериальные гликолипиды могут быстро связываться с экспрессированными на клеточной поверхности молекулами CD1 с помощью механизма экстрацеллюлярной загрузки – этот процесс постулирован для CD1а и, возможно, CD1с.
Считается, что загружающие гликолипиды в CD1 молекулы могут включать шаперон-подобные молекулы для облегчения связывания половины гидрофобного липида с гидрофильной антиген-связывающей щелью. Также исследуется, какие микобактериальные гликолипиды нуждаются в переработке до того, как они будут связаны и презентованы молекулами CD1. было показано, что презентация гликолипида молекулами CD1b (но не CD1а) включает в себя транспорт гликолипидов в лизосомальные компартменты. Более того, эндосомально путешествующие CD1b, CD1с и CD1в молекулы содержат YXXZэндосомально-целевую последовательность (Z содержит большую гидрофобную часть цепочки). Этот целевой мотив помогает ассоциации CD1 молекул с адапторным протеином (АР) их корректной внутриклеточной сортировке. При мутации данной последовательности отменяется презентация антигена молекулой CD1b. Кислая среда внутри лизосом может облегчить расщепление антиген – связывающий щели CD1 и обрезанию гликолипидов лизосомальными гликозидазами и липазами. Действительно, при проведении экспериментов с меченными радиоактивными атомами микобактериями было доказано, что микобактериальные гликолипиды ферментативно изменяются на их пути из фагосом.
Антиген-связывающая щель CD1 молекул, возможно, связывает две гидрофобные цепочки жирных кислот гликолипидов, тогда как гидрофильная углеводная часть высовывается для распознавания Т-клетками (рис. 4). Ферментативная модификация углеводной части может привести к дифференциации Т-клеточных эпитопов и, следовательно, к антигенной специфичности, несмотря на то, что CD1 молекулы неполиморфны. Ферментативная модификация жирных кислот может улучшить аккомодацию гликолипидов в щели CD1 молекул [23].
4.5 CD1d и NКТ-клетки при инфекциях
Знания о роли второй группы CD1 молекул и NКТ-клеток в антибактериальном ответе хозяина ещё ограничены. NКТ-клетки находятся первоначально в печени, где они продуцируют IL4 в ответ на лиганд ТКR. Стимуляция NКТ-клеток αGalCer индуцирует синтез ИЛ4 и ИФНγ, в результате иммунный ответ склоняется в сторону Тх2-типа. При инфекции, вызванной Mycobacteriymbovis, Bacille-CalmetteGuerrin начальный интерлейкиновый взрыв NКТ-клеток модулирует продукцию ИФНγ. Это, возможно, достигается за счет индуцированного ВСGвыделения ИЛ12. В самом деле, при выделении обоих цитокинов происходит сдвиг в сторону продукции ИФНγ. Введение анти-CD1 моноклональных антител приводит к незначительному улучшению течения листериоза. Параллельно увеличивается секреция ИФНγ, ИЛ17 и ТНФ, а секреция ТНФβ сильно снижается. Позже показана практическая роль ТНФβ в иммунной регуляции NКТ-клетками. Такое же анти-CD1 введение слегка усиливает туберкулез у мышей и снижает продукцию ИФНγ, ИЛ12 и ТНФ. Согласуется с этим то, что NКТ-клетки, контролируемые CD1, принимают участие в формировании гранулемы, индуцируемой микобактериальными гликолипидами, в частности РIМ. CD1 Knockout мыши, зараженные M. tuberculosis, не страдают от развивающегося туберкулеза по сравнению с диким типом мышей. Это различие может быть объяснено чрезмерностью иммунной системы, что способствует компенсации функций NKТ-клеток другими клетками у CD1 КО мышей. Или, возможно, что введение анти-СD1d АТ не только блокирует узнавание СD1 клетками NK, но также и заражение АПК. Интересен тот факт, что реагирующие клетки через CD1d и CD1c могут влиять на кальциевый наплыв в Т-клеточную линию, экспрессирующую СD1.
Регуляторную роль NКТ-клеток лучше всего демонстрируется на их роли в ЛПС-индуцированной реакции. Считается, что данная продукция ИФНγ является движущей силой ЛПС-индуцированного летального шока.
Хотя считалось, что быстрая продукция ИФНγ происходит NКT-клетками, но, возможно, что резидентные печеночные NКТ-клетки являются источником ИФНγ при ЛПС-индуцированной печеночной патологии. Было показано, что резидентные печеночные NКТ-клетки, ответственные за гепатотоксичность, активируются ИЛ-12, которая выделяется ЛПС-стимулированными Купферовскими клетками. Истощение NКТ-клеток возрастает при сопротивлении накоплению ИЛ-12 (ЛПС-индуцированная генерализованная реакция Шварумана). CD7 КО мыши с дефектом в продукции ИФНγ и сокращением числа резидентных печеночных NКТ-клеток устойчивы к ЛПС-индуцированному шоку. Порог активации NКТ-клеток бактериальными продуктами низок, поэтому возникает риск острой и тяжелой патологии, которая требует контррегуляции игибиторными цитокинами, такими как ИЛ-10 или ТФРβ. Такая чувствительность позволяет NКТ-клеткам быстро отвечать на проникновение микроорганизма, но несет риск возникновения чрезмерной реакции, приносящей вред хозяину. Интересно, что активация и экспансия NКТ-клеток не вызвана легким попаданием бактериальной флоры. Незараженные мыши содержат то же число NКТ-клеток, что их обычно выведенные сородичи.CD1а-, CD1b- и CD1с-зависимые Т-клетки убивают зараженные клетки – мишени перфорин-зависимым способом.
Они выделяют микробицидную молекулу, вместе с NKT-клетками гранулизин, которая способна убивать микобактерии также хорошо, как и другие патогенные бактерии, грибы и паразиты. Гранулизин не может добраться до патогенна, расположенного в фагосомах, поэтому зависит от кооперации с перфорином.
Открытие, что Т-клетки распознают липиды и гликолипиды, презентуемые CD1 белками, сильно расширило число потенциальных микробных антигенов, преследуемых иммунной системой во время инфекции. Способность CD1d и NКТ-клеток активировать врожденный и адаптированный иммунные ответы привела к идее, что эти клетки могут модулировать устойчивость к инфекционным агентам. В добавок, CD1dNКТ-клетки могут непосредственно внести вклад в резистентность хозяина, так как они выделяют множество эффекторных молекул, которые могут воздействовать на антимикробный эффект. Хотя многое было изучено о CD1dNКТ-клетках при использовании синтетического АГ α-галактозинцерамида (αGalCer), остается область, недостаточно изученная, о физиологии собственных и микробных антигенов, которые могут быть презентованы с помощью CD1d [24].