Основное значение белков заключается в том, что за их счет строятся клетки и межклеточное вещество и синтезируются вещества, принимающие участие в регуляции физиологических функций. В известной мере белки, однако, наряду с углеводами и жирами, используются и для покрытия энергетических затрат.
1.1 Промежуточный обмен белков
Белки в пищеварительном канале подвергаются расщеплению протеолитическими ферментами (пепсином, трипсином, химотрипсином, полипептидазами и дипептидазами) вплоть до образования аминокислот. Поступившие из кишечника в кровь аминокислоты разносятся по всему организму и из них в тканях синтезируются белки.
Как показали исследования с применением тяжелого изотопа азота (N18), в теле все время происходит перестройка белковых тел с выхождением из них и обратным включением в их состав аминокислот. Белки тела находятся в состоянии постоянного обмена с теми аминокислотами, которые находятся в составе небелковой фракции. В теле происходят также превращения одних аминокислот в другие. К числу таких превращений относится переаминирование, заключающееся в переносе аминогруппы с аминокислот на кетокислоты (А. Е. Браунштейн и М. Г. Крицман). При окислительном распаде аминокислот прежде всего происходит дезаминирование. Аммиак, отщепляющийся в качестве одного из конечных продуктов белкового обмена, у высших животных в значительной своей части подвергается дальнейшему превращению в мочевину. У человека азот мочевины составляет в среднем 85% всего азота мочи.
У птиц и рептилий главным конечным продуктом обмена белков является не мочевина, а мочевая кислота. Даже введенная в организм мочевина превращается в организме птиц в мочевую кислоту. Такая особенность азотистого обмена связана с тем, что эмбриональный период жизни птиц протекает в замкнутом пространстве, внутри яйца. Мочевая кислота обладает очень низкой растворимостью и слабо проникает через животные перепонки. Поэтому накопление в полости аллантоиса и эмбрионов такого продукта азотистого обмена, как мочевая кислота, не приносит вреда эмбрионам.
У млекопитающих мочевая кислота также является одним из конечных продуктов, выводимых с мочой. Она образуется только из пуриновых тел, которые входят в состав нуклеопротеидов и нуклеотидов, являющихся коферментами некоторых ферментативных систем.
У собак мочевая кислота подвергается дальнейшему расщеплению, и конечным продуктом обмена пуринових тел у них является аллантоин.
К числу важных конечных продуктов азотистого обмена относятся также креа-тинин и гиппуровая кислота. Креатинин представляет собой ангидрид креатина. Креатин находится в мышцах и в мозговой ткани в свободном состоянии и в соединении с фосфорной кислотой (фосфокреатин).
Креатинин образуется из фосфокреатинина путем отщепления фосфорной кислоты. Количество выводимого с мочой из организма креатинина сравнительно постоянно (1,5 г в суточной моче) и мало зависит от количества белков, принимаемых с пищей. Только при мясной пище, богатой креатином, количество креатинина в моче возрастает.
Гиппуровая кислота синтезируется из бензойной кислоты и гликокола (у собак преимущественно в почках, у большинства животных и у человека преимущественно в печени и в меньших размерах в почках).
Этот синтез, невидимому, направлен на обезвреживание бензойной кислоты. Особенно много образуется гиппуровой кислоты у травоядных животных в связи с тем, что в растительной пище содержатся вещества, превращающиеся _в животном организме в бензойную кислоту. Увеличение содержания гиппуровой кислоты в моче наблюдается и у человека при переходе на растительную диету.
Продуктами распада белков, подчас имеющими большое физиологическое значение, являются амины (например, гистамин).
1.2 Роль печени и почек в обмене белков
При протекании крови через печень аминокислоты частично задерживаются в ней и из них синтезируется «запасный» белок, легко потребляемый организмом при ограниченном введении белка. Незначительный запас белка, невидимому, может откладываться и в мышцах (А. Я. Данилевский).
Рисунок 1.1 – Схема экк-павловской фистулы.
І — схема хода сосудов до операции; II — экк-павловская фистула. Наложено соустье между воротной веной и нижней полой веной; воротная вена между соустьем и печенью перевязана; ІІІ — «перевернутая» экк-павловская фистула. После наложения соустья между воротной веной и нижней полой веной последняя перевязана выше соустья — в этом случае развиваются коллатерали между v. porta n v. azygos.
В печени происходит, вероятно, также образование белков. Так, после кровопотерь нормальное содержание альбуминов и глобулинов плазмы крови быстро восстанавливается. Если же функция печени нарушена отравлением фосфором, то восстановление нормального белкового состава крови чрезвычайно замедлено. Образование альбуминов в печени показано в опытах с ее измельченной тканью. Печень играет центральную роль и в промежуточном белковом обмене. В ней в большом объеме совершаются процессы дезаминирования, а также синтез мочевины. В печени же происходит обезвреживание ряда ядовитых продуктов кишечного гниения белка (фенолы, индол). Удаление печени вызывает через некоторое время гибель животного даже при условии повторного введения глюкозы. Очевидно, это обусловлено отравлением продуктами промежуточного обмена белков, в частности, накоплением аммиака. Очень большую роль в изучении функции печени сыграл метод наложения соустья между венами (фистула Экка-Павлова).
Экк-павловская фистула представляет соустье между воротной веной и нижней полой веной (рис. 157), причем участок воротной вены вблизи печени перевязывается. В результате такой операции кровь, оттекающая от кишечника и поступающая в воротную вену, не может из нее поступать в печень, а изливается в нижнюю полую вену, минуя печень. Такая операция сохраняет печень жизнеспособной, так как последняя снабжается кровью через печеночную артерию. Но при этом исключается возможность задержки печенью токсических веществ, всасываемых кишечником. Впервые эта трудная операция была осуществлена Н. В. Экком в лаборатории И. Р. Тараханова. Однако сохранять в живых собак с таким свищом Экку не удалось. И. П. Павлов в 1892 г. прооперировал около 60 собак, причем около трети их остались живыми и были подвергнуты изучению. Биохимическая часть исследований была проведена М. В. Ненцким и его сотрудниками. Оказалось, что собаки с экк-павловской фистулой могут жить в течение значительного срока, если только их пища содержит мало белка. При белковой пище, в частности, при даче собакам большого количества мяса, происходит отравление организма ядовитыми продуктами распада белков. Животное становится возбужденным, координация движений нарушается, наступают судороги и затем смерть. В крови при этом обнаруживается повышенное содержание аммиака. Органом, принимающим значительное участие в белковом обмене, являются почки. В почках происходит отщепление аммиака от аминокислот, причем отщепляющийся аммиак идет на нейтрализацию кислот. Последние в форме аммонийных солей выделяются с мочой.
Через почки происходит освобождение организма от образовавшихся азотистых конечных продуктов белкового обмена (мочевина, креатинин, мочевая кислота, гиппуровая кислота, аммиак). При нарушении функции почек в результате их заболевания происходит задержка всех этих продуктов в тканях и в крови, что приводит к накоплению небелкового (так называемого остаточного) азота в крови (азотемия и уремия). Если накопление азотсодержащих продуктов обмена в крови прогрессирует, то человек погибает.
1.3 Обмен сложных белков
Нуклеопротеиды принимают участие в явлениях роста и размножения. В тканях, не увеличивающих уже своей массы, роль нуклеопротеидов, по-видимому, сводится к участию в воспроизведении белковых веществ ткани. Обмен цитоплазматических нуклеопротеидов (рибонуклеопротеидов) происходит интенсивнее, чем обмен ядерных нуклеопротеидов, дезоксирибонуклеопротеидов. Так, скорость обновления фосфора в рибонуклеиновой кислоте печени в ЗО раз, а в рибонуклеиновой кислоте мозга в 10 раз больше, чем в дезоксирибонуклеиновой кислоте этих тканей. Об обмене нуклеопротеидов в организме человека судят по выведению пуриновых тел, в частности, мочевой кислоты. В обычных условиях питания ее выделяется 0,7 г в сутки. При мясной пище образование ее в организме повышено. При нарушении обмена, выражающемся в заболевании подагрой, трудно растворимая мочевая кислота откладывается в тканях, в частности, в окружности суставов.
В организме непрерывно происходит распад и синтез гемоглобина. При синтезе геминовой группы используется гликокол и уксусная кислота. Необходимо также достаточное поступление в тело железа.
Об интенсивности распада гемоглобина в теле можно получить представление по образованию желчных пигментов, возникновение которых связано с расщеплением порфиринового кольца геминовой группировки и отщеплением железа. Желчные пигменты поступают с желчью в кишечник и в толстых кишках подвергаются восстановлению до стеркобилиногена или уробилиногена. Часть уробилиногена теряется с каловыми массами, а часть всасывается в толстых кишках и затем попадает в печень, из которой вновь поступает в желчь. При некоторых страданиях печени уробилиноген не задерживается полностью в печени и попадает в мочу. Содержащийся в моче уробилиноген в присутствии кислорода окисляется в уробилин, отчего моча темнеет.
1.4 Баланс азотистого обмена
Изучение белкового обмена облегчается тем, что в состав белка входит азот. Содержание азота в различных белках колеблется от 14 до 19%, в среднем же составляет 16%. Каждые 16 г азота соответствуют 100 г белка, air азота, следовательно, — 6,25 г белка. Поэтому, изучая азотистый баланс, т. е. количество азота, введенного с пищей, и количество азота, выведенного из организма, можно охарактеризовать суммарно и белковый обмен. Усвоение азота организмом равно азоту пищи минус азот кала, выведение — количеству азота, выделенного с мочой. Умножая эти количества азота на 6,25, определяют количество потребленного и распавшегося белка. На точности этого метода сказываются потери организмом белков с кожной поверхности (слущивающиеся клетки рогового слоя эпидермиса, отрастающие волосы, ногти). Процессы расщепления белков в организме и выведение продуктов обмена, так же как усвоение воспринятых белков, требуют многих часов. Поэтому для определения величины белкового распада в организме необходимо собирать мочу в течение суток, а при ответственных исследованиях — даже в течение многих суток подряд.