Наибольшее влияние на развитие Б. оказывает генетическая инженерия, методы которой позволяют выделять индивидуальные гены и получать кодируемые ими продукты в больших количествах. На основе генно-инженерной технологии разработано и осуществляется производство инсулина и гормона роста человека, интерферонов и других биологически активных белков. Разрабатываются генно-инженерные технологии получения противовирусных вакцин, которые особенно ценны в тех случаях, когда выделять вирус для этих целей либо трудно, либо опасно. Так, вирус гепатита В вне организма не размножается, и его специфичный антиген ранее выделяли только из крови людей – носителей вируса. После того, как был получен ген, контролирующий синтез этого белка, были созданы микроорганизмы, активно продуцирующие антиген вируса гепатита В в процессе своей жизнедеятельности.
Клонированные гены и другие участки ДНК человека, а также искусственно синтезированные участки генов, полученные с помощью биотехнологических подходов, уже нашли практическое применение при выявлении носительства патологических генов и диагностике некоторых наследственных болезней человека, в т.ч. и дородовой диагностике. Поставлена и активно разрабатывается на экспериментальных моделях проблема лечения наследственных болезней путем пересадки нормального гена в клетки больного человека.
Важнейшей для медицинской Б. областью стала клеточная инженерия, в частности технология получения моноклональных антител, которые продуцируются в культуре или в организме животного гибридными лимфоидными клетками – гибридомами. Технология получения моноклональных антител оказала большое влияние на фундаментальные и прикладные исследования в области медицины и на медицинскую практику. На их основе разработаны и применяются новые системы иммунологического анализа – радиоиммунологический и иммуноферментативный анализ. Они позволяют определять в организме исчезающе малые концентрации специфических антигенов и антител. Большое значение моноклональные антитела приобрели для типирования тканевых антигенов (прежде всего антигенов класса HLA) при подборе наиболее подходящих доноров для трансплантации органов и тканей. Моноклональные антитела к специфическим опухолевым антигенам или определенным белкам, появляющимся при наличии опухолей, играют большую роль в ранней диагностике опухолей и их метастазов, позволяют контролировать эффективность терапии. Эти антитела, иммобилизованные на нерастворимом инертном носителе, могут быть весьма эффективны для избирательного удаления из кровотока ядовитых соединений, при интоксикациях. С помощью иммобилизованных моноклональных антител получают также такие препараты, как, например, интерферон, в промышленных масштабах.
Коэффициент профилактической эффективности вакцины – показатель способности вакцины предохранять людей от клинически выраженного заболевания соответствующей инфекционной болезный: отношение разности чисел заболевших в контрольной группе и среди привитых к числу заболевших в контрольной группе, выраженное в процентах; определяется в условиях строго контролируемого эпидемиологического эксперимента.
Вакцины (лат. vaccinus коровий) – препараты, получаемые из микроорганизмов или продуктов их жизнедеятельности; применяются для активной иммунизации людей и животных с профилактической и лечебной целями.
Различают следующие виды вакцин:
Вакцина адсорбированная (v. adsorptum) – В., антигены которой сорбированы на веществах, усиливающих и пролонгирующих антигенное раздражение.
Вакцина антирабическая (v. antirabicum; анти- + лат. rabies бешенство) – В., изготовленная из штамма фиксированного вируса бешенства в суспензии тканей головного мозга животных или в культуре клеток и предназначенная для предупреждения заболевания у лиц, укушенных (ослюненных) животными, больными бешенством (подозреваемыми на заболевание).
Вакцина ассоциированная (v. associatum; син.: В. комбинированная, В. комплексная, поливакцина) – препарат, состоящий из нескольких В. различного типа, предназначенный для одновременной иммунизации против нескольких инфекционных болезней.
Вакцина живая (v. vivum) – B., содержащая жизнеспособные штаммы патогенного микроорганизма, ослабленные до степени, исключающей возникновение заболевания, но полностью сохранившие антигенные свойства, обусловливающие формирование специфического иммунитета у привитого.
Вакцина поливалентная (v. polyvalens; греч. poly – много + лат. valens, valentis сильный) – В., изготовленная на основе нескольких серологических вариантов возбудителя одной инфекционной болезни.
Вакцина убитая (v. inactivatum) – В., изготовленная из микроорганизмов инактивированных (убитых) воздействием физических или химических факторов.
Вакцина фенолизированная (v. phenolatum) – убитая В., изготовленная из микроорганизмов, инактивированных фенолом.
Вакцина формалинизированная (v. formalinatum; син. формолвакцина) – убитая В., изготовленная из микроорганизмов, инактивированных формалином.
Вакцина химическая (v. chemicum) – В., состоящая из специфических антигенов, извлеченных из микроорганизмов, и очищенная от балластных веществ.
Вакцина эмбриональная (v. embryonale) – В., изготовленная из вирусов или риккетсий, выращенных на эмбрионах птиц (кур, перепелок).
Вакцина этеризованная (v. aetherisatum) – убитая В., изготовленная из микроорганизмов, инактивированных эфиром.
Вакцины состоят из действующего начала – специфического антигена; консерванта для сохранения стерильности (в неживых В.); стабилизатора, или протектора, для повышения сроков сохраняемости антигена; неспецифического активатора (адъюванта), или полимерного носителя, для повышения иммуногенности антигена (в химических, молекулярных вакцинах). Специфические антигены, содержащиеся в В., в ответ на введение в организм вызывают развитие иммунологических реакций, обеспечивающих устойчивость организма к патогенным микроорганизмам. В качестве антигенов при конструировании В. используют: живые ослабленные (аттенуированные) микроорганизмы; неживые (инактивированные, убитые) цельные микробные клетки или вирусные частицы; извлеченные из микроорганизмов сложные антигенные структуры (протективные антигены); продукты жизнедеятельности микроорганизмов – вторичные метаболиты (например, токсины, молекулярные протективные антигены): антигены, полученные путем химического синтеза или биосинтеза с применением методов генетической инженерии.
В соответствии с природой специфического антигена В. делят на живые, неживые и комбинированные (как живые, так и неживые микроорганизмы и их отдельные антигены). Живые В. получают из дивергентных (естественных) штаммов микроорганизмов, обладающих ослабленной вирулентностью для человека, но содержащих полноценный набор антигенов (например, вирус коровьей оспы), и из искусственных (аттенуированных) штаммов микроорганизмов. К живым В. можно отнести также векторные В., полученные генно-инженерным способом и представляющие собой вакцинный штамм, несущий ген чужеродного антигена (например, вирус оспенной вакцины со встроенным антигеном вируса гепатита В).
Неживые В. подразделяют на молекулярные (химические) и корпускулярные. Молекулярные В. конструируют на основе специфических протективных антигенов, находящихся в молекулярном виде и полученных путем биосинтеза или химического синтеза. К этим В. можно отнести также анатоксины, которые представляют собой обезвреженные формалином молекулы токсинов, образуемых микробной клеткой (дифтерийный, столбнячный, ботулинический и др.). Корпускулярные В. получают из цельных микроорганизмов, инактивированных физическими (тепло, ультрафиолетовое и другие излучения) или химическими (фенол, спирт) методами (корпускулярные, вирусные и бактериальные вакцины), или из субклеточных над-молекулярных антигенных структур, извлеченных из микроорганизмов (субвирионные вакцины, сплит-вакцины, вакцины из сложных антигенных комплексов).
Молекулярные антигены, или сложные протективные антигены бактерий и вирусов, используют для получения синтетических и полусинтетических вакцин, представляющих собой комплекс из специфического антигена, полимерного носителя и адъюванта. Из отдельных В. (моновакцин), предназначенных для иммунизации против одной инфекции, готовят сложные препараты, состоящие из нескольких моновакцин. Такие ассоциированные вакцины, или поливакцины, поливалентные вакцины обеспечивают иммунитет одновременно против нескольких инфекций. Примером может служить ассоциированная АКДС-вакцина, в состав которой входят адсорбированные дифтерийный и столбнячный анатоксины и коклюшный корпускулярный антиген. Существует также семейство полианатоксинов: ботулинический пентаанатоксин, противогангренозный тетраанатоксин, дифтерийно-столбнячный дианатоксин. Для профилактики полиомиелита применяют единый поливалентный препарат, состоящий из аттенуироваиных штаммов I, II, III серотипов (сероваров) вируса полиомиелита.
Насчитывается около 30 вакцинных препаратов, применяемых с целью профилактики инфекционных болезней; примерно половина из них живые, остальные инактивированные. Среди живых В. выделяют бактерийные – сибиреязвенную, чумную, туляремийную, туберкулезную, против Ку-лихорадки; вирусные – оспенную, коревую, гриппозную, полиомиелитную, паротитную, против желтой лихорадки, краснухи. Из неживых В. применяют коклюшную, дизентерийную, брюшнотифозную, холерную, герпетическую, сыпнотифозную, против клещевого энцефалита, геморрагических лихорадок и другие, а также анатоксины – дифтерийный, столбнячный, ботулинический, газовой гангрены.