Смекни!
smekni.com

Биохимические механизмы гепатотоксичности ксенобиотиков (стр. 2 из 6)

Некроз и апоптоз гепатоцитов. Имеется два механизма гибели гепатоцитов – некроз и апоптоз [B.A. Jones, G.J. Gores, 1997; А.А. Фильченков, Р.С. Стойка, 1999; Kaplowitz N., 2000]. Основными этапами некроза является набухание клетки, потеря внутриклеточных компонентов, дезинтеграция ядра с последующим фагоцитозом погибших гепатоцитов воспалительными клетками. Некроз обычно начинается с повреждения плазматической мембраны, что приводит к нарушению ионного гомеостаза, набуханию всей клетки и митохондрий. In vivo некротическая смерть клетки сопровождается существенными повреждениями тканей и развитием активного воспалительного процесса. Непосредственной причиной некроза является окислительный стресс и пероксидация липидов, связывание токсических метаболитов ксенобиотиков с биологически важными макромолекулами; повреждение митохондрий и нарушение продукции энергии; разрушение цитоскелета, массивный выход кальция и другие факторы [Kaplowitz N., 2000].

Апоптоз представляет собой генетически запрограммированную смерть клеток, при котором клетка сама активно способствует своей гибели [А.А. Фильченков, Р.С. Стойка, 1999; KaplowitzN., 2000]. Этот процесс запускается через специальные рецепторы смерти на поверхности клетки или нерецепторным путем и ведет к активации ферментативных каскадов и ряда регуляторных белков, которые останавливают митотическую активность клетки (белок р53), вызывают фрагментацию ДНК (эндонуклеазы), деградацию белков (каскад протеолитических ферментов со специфичностью к определенным белкам), нарушают связь клетки с внеклеточным матриксом и т.д. Одним из ранних проявлений апоптоза является снижение величины электрохимического потенциала митохондриальной мембраны и повышение продукции активных форм кислорода. Морфологически апоптоз характеризуется образованием мембранных пузырей, агрегацией хроматина вблизи ядерной мембраны, конденсацией (сжатием клетки), фрагментацией клетки с образованием апоптических телец и последующим их фагоцитозом. В отличие от некроза при апоптозе не возникает выраженной воспалительной реакции.

Традиционно считается, что некроз инициируется нефизиологическими агентами, а апоптоз преимущественно физиологическими. Однако, исследования последних лет показали, что различия между апоптической и некротической смертью клетки не столь очевидны, как это представлялось ранее, и одни и те же факторы могут стимулировать оба процесса, как это доказано в отношении активных форм кислорода и оксида азота [KaplowitzN., 2000; JonesB.E. etal., 2000; LemastersJ.J. etal., 2000]. Гепатотоксины способны вызывать гибель клеток как по механизмам некроза, так и апоптоза [O'BrienT. etal., 2000; LemastersJ.J. etal., 2000]. Оба механизма лежат в основе токсического действия парацетамола, тетрахлорметана и других гепатотоксинов, а соотношение между ними определяется дозой гепатотоксина, применением протекторов и другими факторами [RayS.D., MumawV.R. etal., 1996; RayS.D. etal., 1999; HornT.L. etal., 2000; RayS.D., JenaN., 2000].

Каким образом ксенобиотики включают механизмы апоптоза предстоит еще выяснить. Возможно, что решающее значение принадлежит рецептор-независимому механизму, который запускается неспецифическими факторами – оксидом азота, активными формами кислорода и т.д., молекулами способными повреждать клеточные макромолекулы и без апоптоза [KazzazJ.A. etal., 1996]. Важная роль оксида азота подтверждается не только увеличением его образования после введения гепатотоксинов [Gardneretal., 1998], но и протекторной активностью ингибитора синтетазы оксида азота аминогуанидина при повреждении печени тетрахлорметаном [Al-Shabanah O.A. etal., 2000], парацетамолом [Gardneretal., 1998]. Сам по себе оксид азота, в особенности после взаимодействия с супероксидным радикалом и превращения в пероксинитрит, является реакционноспособным соединением и его неконтролируемое увеличение оказывает мощное повреждающее действие на биологические структуры, вызывая их нитрозилирование и иницируя апоптоз [Eu J.P. etal., 2000; Murphy M.P., 1999; Lopez-Garcia M.P., Sanz-Gonzalez S.M., 2000].

Иниицируют апоптоз и активные формы кислорода [Anderson K.M., Seed T., Ou D., Harris J.E., 1999]. Так, предполагается [Sakurai K., Cederbaum AI., 1998], что способность этанола вызывать апоптоз клеток HepG2 связана с окислительным стрессом.

Активные формы кислорода могут появляться как побочный продукт каталитического цикла реакций, катализируемых цитохромом Р450, синтетазой оксида азота, NADPH-редуктазой, диафоразой и другими ферментами, либо вследствие участия семихинонных метаболитов ксенобиотиков в реакциях одноэлектронного переноса с кислородом [Farber J.L. et al., 1998; Coon M.J. et al., 1998; Goasduff T, Cederbaum A.I., 1999; Garner A.P. et al., 1999; Beall H.D., Winski S.I., 2000], либо вследствие активации макрофагов, которые являются мощными продуцентами свободнорадикальных форм кислорода [S.L. Michael1 et al., 1999; LawsonJ.A. etal., 2000].

Еще один механизм токсического действия ксенобиотиков связан с образованием реакционноспособных метаболитов. Многие ферментные системы способны превращать молекулу токсина в активные ацетилирующие, алкилирующие или арилирующие метаболиты, которые ковалентно связывается с критическими для гепатоцита макромолекулами [N.R. Pumford, N.C. Halmes., 1997; RombachE.M., HanzlikR.P., 1999; J.A. Hinson, etal., 2000]. Так, цитохром P450-зависимое окисление ксенобиотиков типа бромбензола или парацетамола ведет к образованию электрофильных интермедиатов, способных образовывать ковалентные аддукты с тиол-содержащими мембранными белками, которые регулируют гомеостаз кальция. Возрастание содержания внутриклеточного кальция может стать причиной гибели клеток.

В зависимости от дозы ксенобиотика и степени повреждения, некроз гепатоцитов может проявляться от бессимптомного повышения трансаминаз до печеночной недостаточности. Наиболее известным примером является дозозависимый некроз печени, вызванный парацетамолом. Метаболизм препарата включает его окисление цитохромами Р4502Е1, 1А2 и 3А, глюкуронирование и(или) сульфатацию и коньюгацию с глутатионом электрофильного интермедиата - N-ацетил-p-бензохинонимина [Nelson S.D.,1995; Pirmohamed M., Madden S., Park B.K., 1996]. В норме активность глюкуронил- и сульфотрансфераз достаточно высока и только небольшая часть парацетамола метаболизируется цитохромом P450. Если количество препарата превышает емкость этих ферментов, реакционноспособный метаболит N-ацетил-p-бензохинонимин ковалентно связывается с макромолекулами клетки, нарушает митохондриальную и ядерную функции [C.A. Lee et al., 1991; S. Jaw, E.H. Jeffery, 1993; J.F. Snawderetal., 1994; S.S. Leeetal., 1996; SinclairJ., etal., 1998]. Коньюгация с глутатионом способствует превращению его в меркаптуровую кислоту - нетоксический водорастворимый метаболит, экскретируемый почками. В случае передозировки парацетамола или повышенной чувствительности у отдельных лиц (обусловленной индукцией цитохрома P-450, истощением восстановленного глутатиона, ослаблением глюкуронирования и сульфатации), системы детоксикации исчерпываются и образующийся метаболит арилирует нуклеофильные макромолекулы, вызывая некроз печени [H.J. Zimmerman, W.C. Maddrey, 1995; L. Zhouetal., 1996; A.M. Matthewsetal., 1997 CohenS.D., KhairallahE.A., 1997]. Еще один путь реализации токсического действия парацетамола состоит в активации образования активных форм кислорода и оксида азота.

Кроме цитохрома Р450, другиефферменты также способны генерировть гепатотоксические метаболиты. В частности алкогольдегидрогеназа, катализирует окисление аллилового спирта в токсический метаболит – ненасыщенный альдегид акролеин, который вызывает окислительный стресс, вызывая истощение восстановленного глутатиона и блокируя сульфгидрильные группы белков [Miccadei S., Nakae D., Kyle M.E., Gilfor D., Farber J.L.,1988; Rikans L.E., Cai Y, Hornbrook K.R., 1994]

Токсические метаболиты образуются не только в процессе окислительных превращений ксенобиотиков, но и в реакциях конъюгации. К гепато- и нефротоксическим метаболитам, образующимся в этих реакциях относятся ацилглюкурониды многих нестероидных противовоспалительных препаратов. Так, например, ацилглюкуронид дифлунизала легко вступает в реакцию трансацилирования и ковалентно связывается с белками печени с образованием аддукта типа белок-лекарство [Wang M., Dickinson R.G., 1998].

Примером комбинированной токсико-аллергической реакции является галотановая гепатотоксичность. Восстановительное дегалогенирование галотана в печени идет в анаэробных условиях с образованием 2-хлор-1,1-дифторэтилена и 2-хлор-1,1,1-трифторэтана. В этом процессе принимают участие цитохромы Р4502В1, 2Е1 и 3А2, что показано в реконструированных системах [Chow et al., 1996; Ferrara et al., 1997]. Путь восстановительного дегалогенирования сопряжен с образованием свободно-радикальных (неспаренный электрон) или карбеновых (2 неспаренных электрона) интермедиатов, оказывающих прямое цитотоксическое действие или опосредованное, через активацию образования активных форм кислорода и перекисного окисления липидов, действие. Окислительный метаболизм галотана, происходящей при участии цитохрома Р4502Е1 и других монооксигеназ, ведет к образованию трифторацетилхлорида – высокоактивного соединения, которое образует аддукты с микросомальными белками печени и инициирует перекисное окисление липидов [J.G. Kenna, 1997; F. Hasan, 1998; KharaschE.D. etal., 2000]. Именно прямой гепатотоксичностью галотана обьясняют факт повышения уровня трансаминаз у 1/3-1/5 пациентов сразу после галотановой анестезии.