федеральное агентство по образованию
ПЕНЗЕНСКИЙ ГОСУДАРСТВЕННЫЙ ПЕДАГОГИЧЕСКИЙ УНИВЕРСИТЕТ ИМЕНИ В.Г. БЕЛИНСКОГО
Принято на заседании Ученого совета Естественно-географического факультета протокол № ___от «___» _________2006 г.
Декан факультета ________________
Л.В. Кривошеева
УТВЕРЖДАЮ
Проректор по учебной работе
______________________________
М.А. Пятин
УЧЕБНАЯ РАБОЧАЯ ПРОГРАММА
по дисциплине «Биотехнология»
для специальности
020208 (012300)– «Биохимия»
Факультет естественно-географический
Кафедра биохимии
Пенза, 2006 год
ТРЕБОВАНИЯ ГОСУДАРСТВЕННОГО ОБРАЗОВАТЕЛЬНОГО СТАНДАРТА ПО ДИСЦИПЛИНЕ
Индекс | Наименование дисциплины и ее основные разделы | Всего часов |
ДС.00 | Специальные дисциплины и дисциплины специализации | |
ДС.Ф.00 | Федеральный компонент | |
ДС.Ф.09 | БиотехнологияЗадачи и методы биотехнологии; генетическая инже-нерия; иммобилизованные ферменты и их применение в биотехнологии. | 50 |
КВАЛИФИКАЦИОННЫЕ ТРЕБОВАНИЯ
Подготовка специалиста-биохимика проводится на биологических факультетах или отделениях, на кафедрах биохимии. Реализация основной образовательной программы специалиста биохимика должна обеспечиваться преподавателями, имеющими базовое образование и/или опыт работы и публикации по профилю преподаваемых дисциплин, систематически ведущих научную и научно-методическую работу, подтвержденную публикациями. Доля преподавателей с учеными степенями и званиями должна быть не менее 67%. Преподаватели специальных дисциплин, как правило, должны иметь ученую степень и опыт деятельности в соответствующей профессиональной сфере.
ЦЕЛИ И ЗАДАЧИ ДИСЦИПЛИНЫ
Курс “Биотехнология” призван ознакомить студентов с принципами применения биологических знаний в производстве практически важных продуктов и приобрести понятие о современных технологических процессах, базирующихся на генетической и клеточной инженерии.
Целью изучения дисциплины является ознакомить студентов с принципами применения биологических знаний в производстве практически ценных продуктов и приобрести системные знания о современных технологических процессах, базирующихся на генетической и клеточной инженерии.
Биотехнология применяет методы, заимствованные из химии, биохимии, микробиологии, молекулярной биологии, химической технологии и компьютерной техники для создания высокорентабельных процессов, производства биологически активных веществ различного назначения.
Одна из главных причин успехов в биотехнологии – прогресс молекулярной биологии, в частности в разработке технологии рекомбинатных ДНК. Эта технология позволяет манипулировать с наследственным материалом клетки, получая новые сочетания полезных признаков и способностей.
В лекционном курсе «Биотехнология» рассматривается разнообразие мира микроорганизмов, их место в биологической эволюции, рост и развитие микроорганизмов, основные физиологические и биохимические свойства, способы культивирования и методы генетической модификации.
Описываются основные способы генетической трансформации организмов – от простейших прокариот до животных и растений. Рассматриваются пути использования генетически модифицированных организмов в биохимии, медицине, пищевой промышленности, энергетике и других направлениях деятельности человека. Подробно рассматриваются пути получения и использования иммобилизованных ферментов, уделяется внимание вопросам современной иммунобиотехнологии; клеточной инженерии, гибридомной технологии получения моноклональных антител. Рассматриваются современные прививочные препараты; иммунобиологические препараты на основе живых культур микроорганизмов.
Программа курса составлена в соответствии с Государственным образовательным стандартом Высшего профессионального образования для студентов, обучающихся по специальности020208 (012300) Биохимия.
По учебному плану этой специальности на курс биотехнология отводится 48 часов, из них 24 часа на аудиторную и 24 часов на самостоятельную работу. Из 24 часов аудиторной работы - 24 часа – лекции. По курсу предусмотрен зачет.
РАСПРЕДЕЛЕНИЕ УЧЕБНОГО ВРЕМЕНИ ПО СЕМЕСТРАМ И ВИДАМ УЧЕБНЫХ ЗАНЯТИЙ
Nсеместра | Всегоауд.часов поплану | Из них | Курсовые работы | Консультации | Зачет | Экзамен | Сам.работа | |
лекции | Лаборатор-ные занятия | |||||||
9 | 24 | 24 | + | + | ||||
Итого: | 24 | 24 | + | + |
СОДЕРЖАНИЕ ДИСЦИПЛИНЫ
Предмет и задачи биотехнологии
Современное состояние и перспективы развития биотехнологии, объекты и методы биотехнологии. Связь биотехнологии с биологическими, химическими, техническими и другими науками. Практические задачи биотехнологии и важнейшие исторические этапы её развития. Основные направления биотехнологии: пищевая, медицинская, сельскохозяйственная, промышленная и экологическая биотехнологии.
Основные объекты биотехнологии
Микробная, растительная и животная клетки. Строение и химический состав клеток. Основные биополимеры клеток: белки, нуклеиновые кислоты, углеводы, липиды. Органеллы клетки, их структура и функции.
Микробная биотехнология
Характеристика отдельных групп микроорганизмов. Водоросли, простейшие, грибы, бактерии, вирусы (морфология, размножение, питание, роль в природе, практическое значение).
Преимущества микроорганизмов перед другими объектами в решении современных биотехнологических задач. Промышленные, модельные и базовые микроорганизмы. Требования к продуцентам, используемым в биотехнологическом производстве.
Методы улучшения продуцентов БАВ: мутация, селекция, Уровни регуляции клеточного метаболизма и пути воздействия на него. Физиологические и генетические способы регуляции метаболизма микроорганизмов-продуцентов. Роль внешних факторов в регуляции метаболизма продуцентов.
Использование генетических методов в биотехнологии. Генетические способы улучшения продуцентов: организменный, клеточный и молекулярный уровни.
Методы культивирования микроорганизмов.
Принципиальная технологическая схема биотехнологического производства. Аппаратурное оформление процессов выращивания микроорганизмов. Типы биореакторов. Виды и состав питательных сред для выращивания микроорганизмов. Системы перемешивания и аэрации. Системы теплообмена, пеногашения и стерилизации биореакторов. Периодическое культивирование. Непрерывное культивирование. Поверхностное и глубинное культивирование. Асептика биотехнологических процессов.
Принципы масштабирования технологических процессов: лабораторные, пилотные и промышленные ферментеры и решаемые с их использованием задачи. Зависимость конструктивных особенностей биореакторов от свойств применяемого субстрата. Специализированные ферментационные технологии: аэробные, твердофазные и газофазные процессы.
Продукты первой и второй стадии ферментации. Взаимосвязь трофо- и идиофазы при получении первичных и вторичных метаболитов.
Конечные стадии получения продуктов биотехнологических процессов
Отделение биомассы: флотация, фильтрование и центрифугирование. Получение внутриклеточных и внеклеточных продуктов биосинтеза. Методы дезинтеграции клеток: физические, химические, “биологические”. Выделение целевого продукта: осаждение, экстракция, адсорбция. Электрохимические методы, хроматография, иммуноэлекторофорез, концентрирование, обезвоживание (сушка), модификация и стабилизация целевых продуктов биотехнологических процессов.
Сырьевая база биотехнологии
Критерии, определяющие выбор сырья для биотехнологических процессов. Природные сырьевые материалы растительного происхождения. Отходы различных производств как сырье для биотехнологических процессов. Химические и нефтехимические субстраты. Перспективы использования в качестве источников углерода твердых и жидких углеводородов и метана. Способы переработки сырья.
Производство микробного белка
Проблема сбалансированных кормов и питания. Продуценты белка. Требования, предъявляемые к микробному белку и возможности его использования. Сырьевая база производства белка одноклеточных организмов: высокоэнергетические субстраты, отходы сельского хозяйства и других производств. Принципиальная схема производства белка одноклеточных организмов.
Биотехнология получения первичных и вторичных метаболитов
Биотехнология получения незаменимых аминокислот. Применение незаменимых аминокислот в медицине и животноводстве. Объемы производства и перспективы. Способы промышленного получения аминокислот. Микробиологический синтез аминокислот. Технологические схемы. Одно- и двухступенчатый способы биосинтеза аминокислот.
Биотехнология получения витаминов. Значение витаминов для человека и животных. Производство каротиноидов, витамина D, рибофлавина. Производство аскорбиновой кислоты как пример химико-ферментативного процесса.
Производство органических кислот. Применение органических кислот. Производство молочной и уксусной кислот. Производство лимонной кислоты: продуценты, субстраты, поверхностный и глубинный способы ферментации, технологические схемы производства.
Производство антибиотиков. Антибиотики, их классификация, основные группы антибиотиков. Применение антибиотиков в медицине, сельском хозяйстве, пищевой и консервной промышленности. Продуценты антибиотиков. Общая технологическая схема производства антибиотиков. Промышленная схема производства пенициллина.