Тем самым определена взаимосвязь и взаимовлияние патологических сдвигов как в сторону позвоночника, так и от "него". Таким образом, в порядке убывающей частоты структуру болевого синдрома двигательного аппарата составляют миогенный, артрогенный, связочно-фасциальный и дискогенный факторы. Иначе говоря, миогенная боль сопровождает все виды болезненности, т.е. включается в оформление суставной, связочной и дискогенной боли. Это основа боли в двигательной системе, но она может быть представлена в "чистом" виде, т.е. без участия остальных трех факторов.
Соответственно, артрогенная боль всегда сопровождается миогенной, но участие связочного и дискогенного факторов не обязательно.
Таким же образом, связочная боль строится на основе мышечной и суставной, но может "обойтись" без дискогенной.
Дискогенная боль, как правило, сопровождается изменениями в мышечной, суставной и связочной структурах и несет в своей структуре все виды болезненности. Правда, при острой грыжевой компрессии в течение короткого времени (этап первичной боли) дискогенная боль может сопровождаться корешковой болью проводникового характера.
В этой связи подчеркнем, что боль при спондилогенных заболеваниях носит характер хронической, т.е. вторичной, дезадаптирующей боли.
Декларативный подход о признании активной роли мышц в биомеханике позвоночника оказался в разрыве от патогенетической роли мышечного фактора в заболеваниях позвоночника, в частности, в оценке боли. Активность мышц оценивалась с точки зрения возможности дефанса в стабилизации положения позвоночника (сколиоз) и тонических изменений при хронических заболеваниях позвоночника. С другой стороны, мышечная болезненность в "чистом" виде рассматривалась часто в отрыве от биомеханики позвоночника в структуре других заболеваний: миозит, миалгия, миопатоз и др. По существу, понятие миогенной боли было удобным с точки зрения терапевтического прагматизма, допускавшего применение различных лечебных средств, преимущественно местного характера, с целью устранения мышечной болезненности.
Миогенная боль может быть генерализованной и локальной. Патогенетической основой миогенной боли является контрактильный патологический механизм вообще, локальный мышечный гипертонус в том числе выступает в качестве генератора патологической рефлекторной системы. Генератор патологической активности в качестве ведущего механизма детерминантной системы в патологической регуляции мышечного тонуса способен навязывать свою активность не только отдельной мышце, но и целому региону, вплоть до всей мускулатуры спины. Следует подчеркнуть, что контрактильный фактор мышечной боли является ведущим.
Рассмотрим патогенез локального мышечного гипертонуса (ЛМГ) и этапы формирования мышечной боли.
Начальная стадия - остаточное напряжение мышцы. Пусковым моментом ЛМГ является статическая (изометрическая) работа минимальной интенсивности в течение длительного времени, в результате чего может произойти пространственная перегруппировка сократительного субстрата. При сильных и кратковременных нагрузках (динамическая работа) в мышце не происходит перегруппировка ткани, наступающее утомление мышцы препятствует этим двум изменениям. Итак, работа минимальной интенсивности может быть обусловлена рефлекторным напряжением мышцы при хронической патологии внутреннего органа, воздействии холода на кожу (рефлекторное напряжение), при дефектном моторном стереотипе, поражении позвоночника и пр. При длительной статической работе минимальной интенсивности (позно-тоническая, установочная активность) происходит сложная перестройка в функциональной деятельности нейромоторной системы. Прежде всего это пространственная деформация работающей мышцы. Наиболее сильная часть мышцы растягивает наименее тонкую и слабую - известный физиологический феномен (Беритов И.С., 1947). Более того, медленные мышцы, обеспечивающие статические функции, являющиеся низкопороговыми, вовлекаются первыми. По представлениям D.Simons (1995), это место соответствует зоне концевой пластинки (end plate zone) - месту наибольшего скопления нервно-мышечных соединений. Автор в этой зоне обнаружил "шум концевой пластины" (end place noise), соответствующий биоэлектрической активности двигательной точки мышцы. Вследствие этого менее иннервируемые участки растягиваются больше, чем "сильные" участки, хотя сократительный процесс охватил все участки в одинаковой степени. В мышечных волокнах конической и перистой формы наиболее толстая, сильная часть при возбуждении сокращается, а тонкий сухожильный конец растягивается. При снятии напряжения эта деформация исчезает в силу естественной эластичности мышцы. Расслабление мышцы, как известно, - акт пассивный, обусловленный ее физико-химическими свойствами и состоянием антагониста. Период расслабления используется для отдыха мышцы, т.е. для восстановления энергетического резерва, лабильности, систем торможения и др. Это и есть физиологическая мера (саногенетическая реакция) адаптации двигательного аппарата в естественных условиях деятельности по И.П.Павлову.
При продолжительной работе, даже минимальной по интенсивности, резервные возможности, особенно при кратковременной паузе, не успевают обеспечить исходные физиологические параметры моторного субстрата. Остаточное напряжение - сформированная пространственная деформация части мышцы в ее слабой части - сохраняется. Это происходит по мере продолжающейся статической работы. Не исключаются и другие сопутствующие механизмы - биомеханические, биофизические, морфологические, иммунные, развертывающиеся в тканях. Особо следует отметить нарушение кальциевого обмена. По представлениям G.Simons (1995) и S.Mense (1995), избыточное содержание ионов кальция в пресинаптической щели и саркоплазме мышцы поддерживает сократительный процесс. Нарушение кальциевой помпы, поддерживающей физиологическое равновесие ионов синаптической щели и саркоплазмы, способствует усугублению первоначальных патологических сдвигов сократительной активности. Вторично возникающие нарушения микроциркуляции подкрепляют возникшее патологическое кольцо изменений биохимических реакций. Таким образом, возникшие нейрональные и биохимические сдвиги на местном, тканевом, уровне могут взаимно патологическим образом усилить друг друга вследствие суммации наступающих изменений. Разумеется, этот процесс может явиться местным лишь на короткий отрезок времени.
Таким образом, в результате этих процессов, при возникновении новой волны возбуждения сложившаяся деформация мышцы не только сохраняется, но и подкрепляется. Это, в свою очередь, приводит к дальнейшим пространственным искажениям в архитектонике не только сократительного субстрата, но и рецепторного аппарата, в первую очередь, мышечных проприорецепторов. В этих условиях создаются условия для рассогласования проприоцептивной импульсации с последовательных участков мышцы, имеющей растянутую и сжатую части. Этот участок является наиболее напряженным с точки зрения морфологической ориентации мышцы и афферентной иннервации при прочих условиях функционального состояния. Рецепторный аппарат в этой зоне может оказаться в сложных условиях функционирования - перерастяжение одних участков при относительном сжатии других, находящихся в зоне формирующегося гипертонуса. Это вызывает разнонаправленную деформацию рецепторов, принадлежащих одному и тому же афференту группы Iа или II.
Основное направление афферентной дезорганизации заключается в дефиците и дисбалансе импульсации динамической и статической модальности. Неадекватная импульсация, преодолевая контроль на входе в сегментарный аппарат вследствие своей продолжительности (импульсация по нейронам типа Iа практически интрасегментарно не тормозится) способна вызвать длительную активность aльфа-мотонейронов. Эфферентная импульсация, поддерживаемая этим процессом, способствует усугублению местных пространственных изменений архитектоники мышцы.
Изменившиеся условия деятельности периферического аппарата нейромоторной системы закономерно влияют на функциональное состояние сегментарных систем обеспечения движения. Вероятно, они в первую очередь направлены на восстановление физиологических и морфологических параметров этой мышцы. Исчерпывание ресурса по восстановлению исходного состояния двигательной единицы означает включение механизмов, направление действия которых следует обозначить как патологическое. Начало этого процесса лежит в искажении проприоцептивной импульсации на границе участка мышцы с остаточной деформацией и нормальной структурой.
В условиях постоянной искаженной афферентации прежде всего ослабляются тормозные процессы, снижается лабильность нервно-мышечного аппарата. Итогом сложных нейродинамических процессов, которые происходят в сегментарном аппарате, является рефлекторное повышение тонуса всей мышцы, содержащей ЛМГ. Это лежит в основе дезорганизации коррекционного (кольцевого) типа построения движений (по Н.А.Бернштейну). Суммарная афферентация из пораженного позвоночника и внутренних органов способствует межсегментарному взаимодействию с рефлекторным повышением мышечного тонуса и с изменением координационных отношений мышц-антагонистов, способствующих развертыванию патологического динамического стереотипа.
Таким образом, проторяется путь проприоцептивного постоянного рефлекса, имеющего явно патологическое значение в деятельности мышцы. Искажение архитектоники терминалей двигательных единиц в зоне гипертонуса является следствием этого патологического рефлекса и причиной последующих пространственных перестроек мышечного пучка - фасцикула.
Очевидно, что афферентная дезорганизация деятельности сегмента меняет также вегетативное обеспечение движения вследствие изменения тонуса симпатических центров бокового рога. Накладываясь на изменение нейротрофического контроля мышц со стороны нейрона, т.е. трофических функций нейрона, оба этих механизма способны обусловить новое звено в патогенезе миогенных триггерных пунктов. В общем виде можно представить этот процесс как сочетание первоначальных патологических нейрональных и последующих биомеханических изменений в структуре контрактильного аппарата. В этой связи как естественное звено патогенеза миогенных триггерных пунктов выступает нарушение функции Ca - помпы в поддерживании нормальной контрактильной активности саркоплазмы (D.Simons, 1984). Напомним, что по представлениям D.Simons, в результате повреждения саркоплазматического ретикулума в мышечном волокне возникает область локального повышения концентрации ионов кальция, которые, используя энергию АТФ, вызывают сокращение отдельных саркомеров, формирующих участок устойчивой контрактуры. В зону микротравмы (?!) выделяется большое количество тромбоцитов - источников серотонина и других биологически активных веществ, способствующих спазму и химической сенсибилизации свободных нервных окончаний.