Смекни!
smekni.com

Властивості кальційактивованих та АТФ–індукованих калієвих струмів мембрани міоцитів taenia caeci морської свинки (стр. 4 из 5)

Отриманні нами дані свідчать, що в ГМК taenia cаесi морської свинки окрім викликаних вихідних калієвих струмів можуть також виникати СВС. На сьогоднішній день аналогічні струми вже описані в багатьох ГМК: трахеї, різних відділах кишечнику та кровоносних судин (Шуба 1965, Bolton et al. 1996). Фізіологічна роль СВС, поки що достеменно невідома.

Велике зацікавлення викликає питання з приводу джерела Са2+ , необхідного для активації кожного зі згаданих раніше компонентів IK(Ca). На сьогодні існує багато думок з цього приводу. Проведені нами досліди, а також отриманні раніше дані (Cole et al. 1989, Повстян та ін. 1997) наочно демонстрували, що амплітуда вихідного К+ струму, через наявність Са2+чутливої компоненти, сильно залежить від кількості Са2+, що входить до клітини через потенціалкеровані Са2+ канали під час деполяризуючого зміщення мембранного потенціалу. Блокування цих каналів іонами Со2+ призводило до значного пригнічення вихідного струму. Нездатність паксиліна пригнічувати вихідний струм в умовах блокування входу іонів Са2+ в клітину може слугувати доказом того, що для активації КСа каналів великої провідності ГМК taenia caeci морської свинки необхідне значне підвищення [Са2+]i в даному разі за рахунок входу іонів Са2+ ззовні через потенціалкеровані Са2+ канали L-типу. В той самий час, для активації SК потрібно незначне підвищення [Са2+]i вище порогового рівня, як зазначалось раніше, близько 85 нМ (Vogalis, Goyal 1997).

В той же час було виявлено, що іони Ca2+, які спонтанно вивільняються з саркоплазматичного ретикулуму (СР), так звані Са2+ спарки, також можуть викликати активацію КСа , при цьому активність каналів буде проявлятись у вигляді СВС (Bolton et al. 1996, Gordienko et al. 1998, Bayguinov et al 2001). Са2+ спарки призводять до локального підвищення [Са2+]i, що в свою чергу призводить до активації невеликої кількості КСа (10-100) (Бурый та ін. 1992, Benham et al. 1986), які генерують появу СВС. Лише суттєве вивільнення Са2+ з СР (викликане наприклад аплікацією кофеїну) може призвести до активації великої кількості КСа каналів та викликати появу вихідного інтегрального макроструму (Гордиенко та ін. 1995, Повстян та ін. 2000). Однак в реальних умовах, подібне масове вивільнення Са2+ депо видається мало ймовірним.

В одній з недавніх робіт, що стосувалась вивчення впливу апаміна на іонні струми ізольованих ГМК ШКТ (Kong et al. 2000) було показано, що СВС можна розділити на два типи – великої та малої амплітуди. Перші блокувались харибдотоксином та утворювались завдяки активації ВК каналів, а другі − апаміном, і, відповідно формувались SК каналами. Проведені нами досліди показали, що паксилін ефективно блокував СВС великої амплітуди, при цьому частота СВС малої амплітуди майже не змінювалась, і, відповідно, не блокувались паксиліном. що узгоджується з наведеними даними. В той же час d –TK призводив до блокування СВС малої амплітуди, що може свідчити про те, що вони формуються за рахунок активації SК. ТЕА неселективний блокатор К+ каналів, на відміну від паксиліна, блокуючи СВС великої провідності також незначно пригнічував СВС малої амплітуди. Як було показано, на інтегральних струмах існує К+ провідність, яка нечутлива до паксиліну, але блокується ТЕА, і відповідно робить вклад в СВС малої амплітуди.

Підсумовуючи вище згадані дані, можна зробити висновок, що в ГМК taenia cаесi морської свинки існує щонайменше два компоненти IK(Ca). Ці компоненти відрізняються між собою не лише провідністю каналів, через які вони переносяться, але і їх чутливістю до [Са2+]i та змін мембранного потенціалу, а також відрізняються кінетичними характеристиками. Окрім наведеного вище, ці канали відрізняються чутливістю до блокаторів (d-TK, паксиліну, ТЕА). Так, d–TK виступає ефективним блокатором SК каналів ГМК ШКТ та може бути використаний, як інструмент для розділення та вивчення іонних струмів.

Локальне підвищення Са2+ виступає важливою ланкою в регуляції мембранного потенціалу, збудливості клітини та агоністіндукованих реакцій (Gordienko et al. 1998, Collier et al. 2000). Ці процеси є безпосереднім результатом вивільнення іонів Са2+ через ріанодинчутливі канали, або через ІР3 активовані канали на саркоплазматичному ретикулумі. В деяких клітинах, локальне вивільнення Са2+ може призводити до утворення так званої Са2+ хвилі, що може розповсюджуватись навколо місця ініціації та через всю клітину (Gordienko et al. 1998, Jaggar et al. 2000). Локальне вивільнення Са2+ в безпосередній близькості до плазматичної мембрани, викликає просторово обмежене збільшення концентрації останнього, що сягає 1 мкМ (Perez et al. 1999). Таке локальне підвищення [Са2+]i активує Са2+залежні іонні канали, що розташовані поблизу місця вивільнення іонів Са2+. Тому головним зв’язуючим ланцюгом між вивільненням Са2+ та клітинною відповіддю, виступає активація іонної провідності в плазматичній мембрані.

Активація вихідного калієвого струму відповідає за генерацію неадренергічних нехолінергічних гальмівних синаптичних потенціалів (НАНХ ГСП). На сьогоднішній день загальноприйнята думка, що АТФ, так само як і NO, виступає медіатором гальмівної нейропередачі в ШКТ (Шуба та ін. 1998, Shuba et al.2003, Moore et al. 1990). В taenia cаесi морської свинки стимуляція НАНХ-нейронів призводила до генерації двофазного ГСП (И.А. Владимирова та ін. 1984,1993). Повільний компонент цього ГСП блокується інгібіторами NO-синтази та харибдотоксином, блокатором BК каналів (Шуба та ін. 1998, Shuba et al. 2003, Загороднюк та ін. 1994), а швидкий – антагоністом пуринорецепторів суруміном, та блокатором SК каналів апаміном (Владимирова та ін. 1986, Шуба та ін. 1998, Shuba et al. 2003). Проведені нами досліди по вивченню впливу АТФ на поодинокі ГМК taenia cаесi морської свинки показали, що АТФ (100 мкМ) при підтримуваному потенціалі в –40 мВ, призводив до значного приросту СВС малої амплітуди. При цьому частота СВС великої амплітуди сильно не змінювалась. Як було вказано раніше, СВС малої амплітуди формуються здебільшого за рахунок активації SК каналів. Прикладення d-TK, як блокатора SК каналів, призводило до значного пригнічення СВС малої амплітуди, та усунення впливу АТФ. Це збігається з існуючими даними на багатоклітинних препаратах, уявленнями та літературними даними (Bayguinov et al. 2000,Shuba et al. 2003). Для встановлення джерела кальцію, що задіється в цих процесах було використано мембраннопроникний антагоніст ІР3 рецепторів – 2-аміноетоксидифеніл борат (2-АРВ) (Maruyama et al. 1997). Преінкубація клітин в розчині з 2-АРВ (30 мкМ) не призводила до суттєвих змін СВС, активованих вивільненням Са2+ з ріанодинових депо. В той же час ефект збільшення частоти СВС при аплікації АТФ був відсутній. Дослідження, проведені на багатоклітинних препаратах показували, що 2-АРВ пригнічував ГСП, викликані інтрамуральним подразненням у препаратах caecum та colon, а також АТФ та НА – викликану гіперполяризацію (Shuba et al. 2003). Це дає можливість зробити висновок, що вивільнення Са2+ з ІР3чутливого кальцієвого депо виступає проміжною ланкою в передачі між P2Y рецепторами і активуванням КСа каналів малої провідності, які приймають участь у генерації апамінчутливого ГСП.

АТФ, як гальмівний нейромедіатор, взаємодіє у гладеньких м’язах з P2Y рецепторами, котрі відносяться до групи метаботропних рецепторів. Ці рецептори зв’язані з внутрішньоклітинними G-білками (Gq/11) завдяки яким активують фосфоліпазу С (Kьgelgen et al. 2006). Для визначення ролі фосфоліпази С у генерації АТФ-індукованої відповіді, було використано інгібітор фосфоліпази С – U73122 (Smith et al. 1990). За таких умов, додавання АТФ на фоні U73122 (5 мкМ) не призводило до зміни частоти появи СВС, як великої так і малої амплітуди. На багатоклітинних гладеньком’язових препаратах caecum (Shuba et al. 2003), застосування U73122, призводило до зменшення амплітуди ГСП, викликаного інтрамуральним подразненням, у порівнянні з тестовим майже на 50%. Наступне додавання апаміну, блокатора КСа малої провідності, призводило до повного блокування ГСП, та появи нехолінергічних збуджуючих синаптичних потенціалів.

Наведені дані дозволяють припустити, що пуринергічна активація СВС є результатом локального вивільнення іонів Са2+ із саркоплазматичного ретикулуму, внаслідок активації P2Y рецепторами фосфоліпази С та задіяного нею інозитолтрифосфатного механізму.


ВИСНОВКИ

1. За допомогою метода фіксації потенціалу було показано, що вихідний трансмембранний іонний струм ГМК taenia caeci морської свинки має три складові: потенціалзалежний струм «затриманого випрямлення» та два компоненти Са2+залежного К+ струму.

2. Вихідний калієвий струм на 50% блокується неселективним блокатором ВК каналів ТЕА (1мМ), та на 40% − селективним блокатором ВК каналів паксиліном (100 нМ).

3. Близько 10% вихідного калієвого струму пригнічується блокатором нікотинових холінорецепторів та КCa каналів d-ТК в концентрації 50 мкМ.

4. Спонтанні вихідні струми (СВС) за своїми ознаками можна розділити на струми малої та великої амплітуди. СВС великої амплітуди чутливі до паксиліну та ТЕА. Це вказує, що вони переносяться через ВК канали. СВС малої амплітуди чутливі до дії d-ТК, що свідчить про активацію SКканалів.

5. Блокатор ІР3 рецепторів 2-АРВ (30 мкМ) пригнічує частоту СВС малої амплітуди та не впливає на СВС великої амплітуди. Це свідчить, що результатом виникнення СВС малої амплітуди є вивільнення Са2+ з ІР3чутливого Са2+ депо міоцитів.

6. Активація пуринорецепторів шляхом прикладення АТФ (100 мкM) супроводжується значним приростом частоти СВС малої амплітуди, що обумовлено активацією SК каналів чутливих до дії d-TK.

7. АТФ в присутності селективного блокатора фосфоліпази С U73122 (5 мкМ) не впливає на частоту та амплітуду СВС