Все это известно. И есть способы измерения остроты частотной настройки слуха. Большинство из них основано на эффекте маскировки, суть которого проста. При одновременном включении двух звуковых сигналов - тихого и громкого - тихий звук (тест) будет заглушен, замаскирован громким (маскером). Но эффективность маскировки зависит от соотношения частот маскера и теста. Если эти частоты близки, то маскировка происходит даже при не очень большой громкости маскера, потому что и маскер, и тест воздействуют на одни и те же чувствительные клетки. Когда частоты различны, маскировка слабее, и чтобы заглушить тест, нужен намного более громкий маскер. Если показать на графике, как эффективность маскировки зависит от частоты, то получится V- образная кривая (рис.1); она-то и показывает остроту частотной настройки: чем кривая уже, тем настройка острее. А для полноты картины нужно построить много таких кривых, используя разные тестовые частоты. Вообще-то в современных исследованиях используются разные, в том числе весьма изощренные, сигналы со сложным частотным составом, но основной принцип метода именно таков. Если же известно, как измерить остроту частотной настройки слуха, то почему это не применяется на практике? Видимо, вследствие громоздкости метода. Измерения такого рода называют многоточечными, потому что для получения одного значения остроты частотной настройки нужно выполнить много измерений, чтобы по полученным точкам провести кривую, как на рис.1, и оценить ширину этой кривой. А ведь каждая точка кривой тоже добывается в результате многих проб, в которых испытывают маскеры разной громкости. И кривых таких нужно получить не одну, а несколько (на разных тестовых частотах). В результате объем измерений растет, как снежный ком. Для исследовательских целей, когда можно многократно работать с постоянными испытуемыми, постепенно накапливая необходимый объем данных, это приемлемо. Но в практических условиях затевать такую канитель, чтобы обследовать слух у пациента, - мало реально.
Рис.1
Кривые, построенные по результатам измерения остроты частотной настройки слуха методом маскировки. На кривой (в центре) показано, с какой интенсивностью должен звучать маскирующий сигнал для того, чтобы заглушить тестовый на частоте 1 кГц (отмечен звездочкой). Ширина кривой на некотором стандартном уровне - показатель остроты частотной настройки (отмечен стрелками). Полное исследование предполагает построение еще нескольких таких кривых при других частотах тестовых сигналов.
К тому же острота частотной настройки - важный, но не единственный фактор, определяющий остроту слуха. Она не всегда позволяет предсказать, как будет восприниматься сигнал сложного частотного состава. Дело в том, что возможны сложные взаимодействия между нервными клетками: отклик каждой из них на звуковой сигнал зависит не только от ее собственных свойств, но и от того, что происходит в соседних клетках. Ситуация в целом получается трудно предсказуемой.
А что если не вырисовывать отдельные кривые частотной настройки и не пытаться по ним предсказать результат анализа сложных звуков, а попробовать сразу получить конечный результат: тестировать слух сложными сигналами и измерять способность к их различению? За аналогией далеко ходить не нужно: достаточно из кабинета врача- отоларинголога перейти в кабинет окулиста. Там оценка остроты, т.е. разрешающей способности, зрения - первейшая процедура. При этом измеряется именно способность различать реальные изображения. Можно ли опыт, накопленный в физиологии зрения, использовать для диагностики слуха? Можно, несмотря на множество принципиальных различий между зрительной и слуховой системами. Эта идея и легла в основу нашей работы.
Как измеряют остроту зрения? Самый строгий способ - тестировать зрение с помощью изображений-решеток, которые состоят из чередующихся светлых и темных полос (рис.2). Испытуемому показывают решетки с разной частотой полос. Если частота решетки невелика, то испытуемый видит, что это полосатый рисунок, а не ровный фон. Если же частота выше некоторого предела, полосы становятся неразличимыми, сливаются в ровный серый фон. Максимальная частота полос, при которой еще различается решетчатый рисунок, - строгая мера остроты зрения. Ответ получается в точных физических единицах: количестве циклов решетки на градус угла поля зрения.
Рис.2 Изображения-"решетки", используемые для тестирования остроты зрения.
На левой паре "решеток" полосы расположены редко, поэтому замена одной "решетки" на другую хорошо заметна. Средняя пара - "решетки" с высокой частотой полос; если смотреть с большого расстояния, то полосы сольются в серый фон, и подмена останется незамеченной. На "решетках" правой пары полосы, хотя и расположены с низкой частотой, мало контрастны; если контраст еще понизить, то смена одной "решетки" на другую тоже будет не заметна. Цель этих измерений состоит в том, чтобы найти пороговый контраст для тест-объектов с разной частотой полос, а также предельную различимую частоту "решетки" и тем самым получить полный и точный показатель разрешающей способности зрения.
Но как установить, какую частоту решетки испытуемый различает, а какую - нет? Простейший способ - придать рисунку из темных и светлых полос вид узнаваемой фигуры, например буквы: если пациент сумеет правильно назвать букву, значит различает рисунок. Но такое упрощение идет в ущерб точности: в букве или картинке расстояние между полосами не может быть везде одинаковым, как в простой решетке. Есть, однако, изящный прием, позволяющий точно сказать, различает ли испытуемый решетчатый рисунок. Это проба на инверсию фазы решетки. Испытуемому показывают решетку определенной частоты, и в некоторый момент светлые и темные полосы этой решетки меняются местами (рис.2). Если рисунок решетки различим, то испытуемый увидит, что что-то сдвинулось, изменилось на экране. Если же полосы не различимы, то испытуемый в этот момент не заметит ничего: ведь за исключением положения полос, решетки до и после замены абсолютно одинаковы, так что серый фон, в который слились полоски, каким был, таким и останется. Итак: предельная частота решетки, при которой можно заметить инверсию ее фазы, - точная мера остроты зрения.
Этот же прием позволяет измерить и другой важнейший показатель - контрастную чувствительность. Можно менять не частоту полос решетки, а контрастность рисунка. Минимальный (пороговый) контраст, при котором различима инверсия фазы решетки, укажет, какова контрастная чувствительность. А чтобы провести измерение во всей полноте, можно варьировать и контраст, и частоту решетки. Зависимость порогового контраста от частоты решетки (частотно-контрастная кривая) - полный и точный показатель разрешающей способности зрения.
Можно ли так же просто и строго, используя тот же оправдавший себя прием, измерять разрешающую способность слуха? Попробуем сделать это. Для начала разберемся, какие сигналы играют для слуха ту же роль, что контрастные решетки для зрения.
Уже говорилось, что первейшая операция, выполняемая ухом, - разложение звука на составляющие его частоты. Рецепторная поверхность органа слуха (кортиев орган) устроена так, что разные ее точки откликаются на разные звуковые частоты, так что вдоль рецепторной поверхности представлена вся шкала звуковых частот: на одном конце - самые высокие частоты, на другом - самые низкие. Что же нужно сделать, чтобы на этой поверхности появилась "решетка" - чередующиеся участки возбужденных и невозбужденных клеток? Ответ очевиден: нужно воздействовать таким звуком, в частотном спектре которого представлены периодически чередующиеся пики и провалы (рис.3). А чтобы измерить разрешающую способность слуха, нужно менять расстояние между спектральными пиками, т.е. "плотность" спектральной решетки, и найти тот предел, при котором ухо еще способно различать, что спектр сигнала не сплошной, а "решетчатый". Если же хотим измерить еще и контрастную чувствительность, будем менять "контраст" спектральной решетки, т.е. высоту пиков и глубину провалов, и найдем тот порог, при котором "решетчатый" спектр отличим от равномерного (рис. 4).
Рис.3 Рецепторная поверхность органа слуха (кортиев орган) схематически представлена в виде полоски, вдоль которой распространяются звуковые волны (вверху).
Каждая точка (чувствительная слуховая клетка кортиева органа) реагирует на звук своей частоты, так что вся шкала звуковых частот (от 20 до 20 тыс. Гц) представлена вдоль полоски. Чтобы создать "решетку" из возбужденных и невозбужденных участков (темные и светлые участки), нужно воздействовать звуком, в частотном спектре которого есть пики и провалы на соответствующих частотах.
Рис.4 Спектры сигналов, используемые для измерения разрешающей способности слуха.
Верхняя пара - прямая и инверсная спектральные решетки с низкой плотностью и высоким контрастом пиков и провалов звукового сигнала. Если один сигнал заменить на другой, это хорошо слышно. Средняя пара - спектры с низким контрастом; в этом случае замену одного сигнала на другой уловить трудно. Внизу - спектры с высоким контрастом, но и с высокой плотностью пиков: пики сливаются в сплошной спектр, поэтому замену одного сигнала другим тоже трудно услышать.
Тут нужно небольшое пояснение: применительно к спектральным решеткам мы использовали термин "плотность", тогда как для зрительных решеток мы говорили об их частоте. По сути это совершенно одно и то же, но дело в том, что применительно к звуку термин "частота" используется для обозначения частоты звуковых волн. Чтобы избежать путаницы, условимся для спектральных решеток использовать термин "плотность", считая, что эта величина тем выше, чем меньше частотный интервал между пиками (пики расположены плотнее).