Смекни!
smekni.com

Диагностика слуха (стр. 6 из 7)

Но как узнать, различает ухо "решетчатый" рисунок спектра или нет? Да точно так же, как и для зрения: используя тест инверсии фазы решетки (рис.4). Включим звуковой сигнал, имеющий "решетчатый" спектр. (Кстати, все сигналы с более или менее широким частотным спектром воспринимаются как шумы различного тембра; так же звучит и наш сигнал.) Затем неожиданно заменим его на другой - тоже "решетчатый", с той же шириной спектра, той же громкости, но с противоположным положением спектральных пиков и провалов на частотной шкале. Он тоже звучит как шум, но с чуть другим тембром. Услышал испытуемый, что в звуке что-то изменилось, - значит, смог различить спектральную структуру сигнала. Если же плотность пиков настолько велика, что они сливаются для него в сплошной спектр, или контраст решетки слишком мал - испытуемый не уловит никакого изменения: ведь за исключением положения спектральных пиков на частотной шкале, сигналы до и после переключения абсолютно идентичны.

Итак, показатели разрешающей способности слуха - та максимальная плотность спектральной "решетки" и тот минимальный ее контраст, при которых улавливается инверсия фазы этой "решетки".

Чем привлекателен такой способ измерения остроты слуха? Во-первых, в отличие от речевой аудиометрии, это строгий аппаратурный метод, и результат он дает в точных физических единицах: плотность спектральных пиков выражается в их количестве на 1кГц или как отношение частоты к интервалу между пиками, а контраст решетки - в процентах отклонения ее пиков и провалов от среднего уровня.

Во-вторых, для тестирования используются сигналы со сложным спектральным составом (т.е. сходные с естественными звуками), поэтому результат отражает реальную разрешающую способность слуха.

В-третьих, это одноточечный метод: чтобы получить одно значение разрешающей способности, достаточно найти лишь один порог восприятия изменения спектральной "решетки", а не много порогов маскировки.

В-четвертых, процедура измерения предельно проста для испытуемого. От него не требуется как-то оценивать характер слышимых звуков, надо лишь ответить на простой и понятный вопрос: заметил ли он хоть какие-то изменения в предъявляемых сигналах? Несомненно, этот достаточно простой и быстрый метод захотелось сразу использовать в практических целях для индивидуальной диагностики. Однако предстояло еще во многом разобраться.

Результат

Основная идея метода была опубликована еще в 1984 г., но, чтобы довести ее "до ума", надо было сделать многое: разработать методы синтеза звуковых сигналов, которые имели бы именно такие частотные спектры, какие нужны для нашей задачи; испробовать разные варианты сигналов, чтобы установить, какие из них наиболее пригодны для тестирования; выяснить, могут ли быть в сигналах посторонние "подсказки", которые исказят результаты измерения; наконец, установить, какова же на самом деле разрешающая способность человеческого слуха в норме. И главное - понять, какие физиологические механизмы определяют разрешающую способность слуха: только ли острота частотной настройки слуховых фильтров или более сложные процессы. Ведь пытаться создать метод диагностики без понимания фундаментальных основ тестируемых процессов - дело бесперспективное.

Все это стало возможным в течение последних лет благодаря выполнению проектов, поддержанных РФФИ. Наконец, впервые были получены данные о частотной разрешающей способности слуха. Если обратиться к результатам, их можно свести к нескольким простым графикам, но именно они характеризуют разрешающую способность нормального слуха. Один из них (рис.5) служит иллюстрацией того, как способность различать контраст между высотой пиков и глубиной провалов зависит от плотности пиков на частотной шкале, т.е. их числа в интервале частот 1 кГц. Если плотность спектральных пиков невелика, человек на слух способен различить спектральный рисунок с отклонениями по громкости от среднего уровня не менее 15-20%; менее контрастные спектральные рисунки слуху недоступны. Но и этот 15-20%-й порог доступен только при низкой плотности спектральной решетки - не более 10 пиков на 1 кГц интервала. По мере того как плотность решетки увеличивается, контрастный порог растет. Например, при плотности решетки 15 пиков на 1кГц спектральный рисунок будет различим только при контрасте перепадов высоты пиков не меньше 50%. А если плотность решетки увеличить до 20-25 пиков на 1кГц, то спектральный рисунок даже при 100%-м контрасте едва-едва различим. Дальше увеличивать контраст некуда; стало быть, 20-25 пиков на 1кГц - это предел частотной разрешающей способности слуха нормального человека. Более дробный спектральный рисунок не различается ни при каких иных параметрах сигнала: все сливается в сплошной, равномерный спектр.

Рис.5 Кривая контрастной чувствительности нормального слуха человека.


Все те сочетания плотности пиков и контраста, которые выше кривой (затененная область), доступны для различения; то, что ниже кривой, - за пределами возможностей слуха

Итак, первый шаг сделан, найдены "рамки", показывающие, в каких пределах слуховая система может различать спектральные рисунки: или контраст не менее 15-20% при низкой плотности спектральных пиков, или плотность не выше 20-25 пиков на 1кГц при 100%-м контрасте, или некоторые промежуточные сочетания того и другого.

Но сразу возникает новый вопрос: одинакова ли разрешающая способность для разных участков частотного диапазона слуха, т.е. для звуков более низкой и более высокой тональности? Предложенный метод вполне позволяет это выяснить. Просто надо использовать сигналы с относительно узкими спектрами, центрированными на разных частотах; тогда полученные с их помощью результаты можно отнести к определенным диапазонам звуковых частот. Например, спектры, показанные на рис.4, сосредоточены вокруг частоты 2 кГц; а можно ведь использовать сигналы с похожими спектрами, но с любой другой центральной частотой - и более низкой, и более высокой. Сделали и это.

Оказалось, что найденный предел различения спектральной плотности - 20-25 пиков на 1кГц - доступен лишь в низкочастотной области звуковых колебаний, примерно до 500 Гц. На более высоких частотах различаемая плотность пиков снижается, причем почти обратно пропорционально частоте (рис.6,а). Раз так, имеет смысл представить плотность спектральной "решетки" не в абсолютной мере (как число пиков на 1кГц частотного интервала), а в относительной - как отношение средней частоты к интервалу между пиками. В таком виде разрешающая способность оказывается почти постоянной в широком диапазоне частот (рис.6,б) и составляет 11-14 относительных единиц. Таким образом, нормальный слух различает спектральные рисунки, в которых интервал между соседними пиками не меньше 1/11-1/14 (7-9%) от средней частоты.


Рис.6 Кривые частотной разрешающей способности слуха, построенные в абсолютной шкале как число пиков на 1кГц частотного интервала (а) и в относительной мере - как отношение средней частоты к интервалу между пиками (б). Области под кривыми (затенены) отвечают различным рисункам спектра; выше - сливающимся в сплошной спектр.

Но измерить остроту слуха - это полдела. Нужно понять, что именно определяет и ограничивает остроту слуха. Многое проясняется, если сравнить частотную разрешающую способность с данными об остроте частотной настройки, которые были получены традиционными методами. Посчитать, как частотные фильтры с определенной настройкой пропускают спектры любой формы, - не слишком сложная математическая задача; острота частотной настройки тоже известна из опытов с маскировкой. Посчитали и получили очень и очень примечательный результат (рис.7): реальная разрешающая способность слуха, полученная в прямых экспериментах, оказалась примерно вдвое выше расчетной! Значит, не напрасны были сомнения, только ли острота частотной настройки отвечает за способность к различению сложных звуковых сигналов. Стало ясно, что важнейшую роль играют нейрофизиологические процессы, приводящие к обострению частотной избирательности. Впрочем, для нейрофизиологов это не слишком большая неожиданность: взаимодействия между нейронами, приводящие к подчеркиванию, выделению контрастов в сложных сигналах, хорошо известны в нервной системе. Но важно было узнать, в какой именно мере эти процессы ответственны за обеспечение остроты слуха. Что и сделано.

Рис.7 Частотная разрешающая способность слуха. Расчетная кривая (1) проходит примерно вдвое ниже кривой реальной разрешающей способности (2). Если же спектр сигнала имеет крутые края, то разрешающая способность - еще выше (3).

Но появляются все новые и новые вопросы. Например, одинакова ли разрешающая способность слуха при разных формах звукового сигнала? Тут тоже обнаружились любопытные детали. Если звуковой сигнал набран не из гладких пиков, а с резко очерченными краями, то разрешающая способность оказывается еще раза в полтора выше (эти результаты тоже показаны на рис.7). Соответственно разница между тем, что предсказывает острота частотной настройки, и тем, что есть на самом деле, оказывается уже почти трехкратной. Этот фактор тоже в существенной мере определяет остроту слуха. В целом нам понятно уже довольно многое, но не менее того предстоит еще выяснить.