Министерство образования Российской Федерации
Пензенский Государственный Университет
Медицинский Институт
Кафедра Анестезиологии
Реферат
на тему:
Пенза
2008
Введение
1. Инсуфляция
2. Капельная масочная анестезия (открытый дыхательный контур)
3. Контуры Мэйплсона
· Компоненты контуров Мэйплсона
· Функциональные характеристики контуров Мэйплсона
4. Реверсивные контуры
· Компоненты реверсивного контура
· Оптимизация конструкции реверсивного контура
· Функциональные характеристики реверсивного контура
· Недостатк реверсивного контура
5. Реанимационные дыхательные мешки
Литература
Дыхательные контуры обеспечивают последний этап доставки газовой смеси к больному. В современной анестезиологической практике дыхательные контуры соединяют дыхательные пути больного с наркозным аппаратом. Существует много модификаций дыхательных контуров, которые различаются по эффективности, сложности и удобству пользования. В данной главе рассмотрены наиболее важные дыхательные контуры: инсуффляция, открытый контур, контуры Мэйплсона, реверсивный контур и реанимационные дыхательные мешки (или реанимационные дыхательные контуры).
Традиционные варианты классификации дыхательных контуров искусственно объединяют функциональные аспекты (например, степень рециркуляции) и механические характеристики (наличие направляющих клапанов). Такие, нередко противоречивые, классификации (например, открытый, закрытый, полуоткрытый или полузакрытый контур) больше вызывают путаницу, нежели способствуют пониманию, поэтому они не обсуждаются.
1. Инсуффляция
Термин "инсуффляция" означает вдувание дыхательной смеси в дыхательные пути без непосредственного контакта больного с дыхательным контуром. Хотя инсуффляция определяется как разновидность дыхательного контура, ее следует рассматривать как методику, позволяющую избегать прямого контакта дыхательного контура с дыхательными путями. Поскольку дети сопротивляются наложению лицевой маски или установке внутривенного катетера, инсуффляция особенно часто используется в педиатрической практике при индукции ингаляционными анестетиками. Она вполне применима и в других ситуациях. Углекислый газ, накапливаясь под операционным бельем около головы и шеи, представляет опасность при офтальмологических операциях, выполняемых под местной анестезией. Инсуффляция высокого потока (> 10 л/мин) воздушно-кислородной смеси позволяет избежать этого осложнения.
Поскольку при инсуффляции нет прямого контакта с больным, выдыхаемая смесь не поступает снова в дыхательные пути. Вместе с тем при этой методике невозможно управлять вентиляцией, а вдыхаемая смесь содержит непредсказуемое количество атмосферного воздуха.
Инсуффляцию целесообразно использовать для поддержания артериальной оксигенации при кратковременном апноэ (например, во время бронхоскопии). При этом кислород направляют не в лицо, а непосредственно в легкие через эндотрахеальный катетер.
2. Капельная масочная анестезия (открытый дыхательный контур)
Здесь дано лишь краткое описание капельной масочной анестезии, поскольку в настоящее время ее продолжают применять лишь в развивающихся странах. На лицо больного накладывают так называемую маску Шиммельбуша (Schimmelbusch), покрытую несколькими слоями марли, на нее капают легкоиспаряющийся анестетик — чаще всего эфир или галотан. Во время вдоха воздух проходит через марлю и, насытившись парами анестетика, поступает в дыхательные пути. Процесс испарения снижает температуру маски, что приводит к конденсации влаги и снижению давления насыщенного пара анестетика (давление насыщенного пара прямо пропорционально температуре).
Углубление анестезии снижает минутную вентиляцию, что приводит к порочному кругу: маска согревается, давление насыщенного пара увеличивается, концентрация анестетика во вдыхаемой смеси становится еще выше. Если под маской накапливается достаточно большое количество углекислого газа (аппаратное "мертвое пространство"), то значительная доля выдыхаемой смеси поступает в дыхательные пути повторно. Кроме того, пары анестетика снижают фракционную концентрацию кислорода во вдыхаемой смеси (эффект разведения), что создает риск гипоксии. Чтобы уменьшить "мертвое пространство" и повысить фракционную концентрацию кислорода во вдыхаемой смеси, следует дополнительно подавать кислород под маску. Другая особенность капельной масочной анестезии — неконтролируемое загрязнение среды операционной парами анестетика — является очень серьезным недостатком при использовании легковоспламеняющихся препаратов (например, эфира).
3. Контуры Мэйплсона
Инсуффляция и капельная масочная анестезия имеют ряд недостатков: невозможно точно дозировать анестетик и, соответственно, сложно управлять глубиной анестезии; нельзя проводить вспомогательную или принудительную ИВЛ; отсутствует возможность использования тепла и влаги выдыхаемой смеси; затруднено поддержание проходимости дыхательных путей при операциях на голове и шее; воздух в операционной загрязняется выдыхаемой в больших объемах смесью. В контурах Мэйплсона (Mapleson) ряд этих проблем разрешен с помощью дополнительных компонентов (дыхательные трубки, подача свежего газа, предохранительные клапаны, дыхательный мешок). Взаимное расположение этих компонентов определяет режим работы контура и служит основой для классификации (табл. 1).
Компоненты контура Мэйплсона
А. Дыхательные шланги. Гофрированные дыхательные шланги, изготовленные из резины (многоразового использования) или пластика (одноразовые), соединяют компоненты системы Мэйплсона между собой и обеспечивают подсоединение к больному. Шланги большого диаметра (22 мм) обеспечивают низкое сопротивление потоку газа и служат потенциальными резервуарами ингаляционных анестетиков. Чтобы максимально снизить потребность в свежей дыхательной смеси, объем дыхательных шлангов в большинстве контуров Мэйплсона должен быть не ниже дыхательного объема.
Растяжимость дыхательных шлангов частично определяет растяжимость всего контура. (Растяжимость определяют как изменение объема на единицу изменения давления.) Длинные шланги с высокой растяжимостью увеличивают разницу между объемом смеси, подаваемым в контур дыхательным мешком или аппаратом, и объемом, поступающим в дыхательные пути больного. Например, если в дыхательном контуре с растяжимостью 8 мл/см вод. ст. при прохождении дыхательной смеси будет развиваться давление 20 см вод. ст., то 160 мл дыхательного объема будут "потеряны" в контуре. Эти 160 мл потери объема складываются из сжатия газа и расширения дыхательных шлангов. Рассмотренный феномен особенно важен, если проводят ИВЛ под положительным давлением (например, в реверсивном дыхательном контуре).
Б. Патрубок для подачи свежей дыхательной смеси. Свежая дыхательная смесь из наркозного аппарата подается в дыхательный контур через специальный патрубок. Как будет рассмотрено чуть позже, местоположение патрубка для подачи свежей дыхательной смеси является главным отличительным признаком для классификации контуров Мэйплсона.
В. Предохранительный клапан (сбрасывающий клапан, регулируемый клапан ограничения давления). Если поступление дыхательной смеси превышает расход (на потребление больным и заполнение контура), то давление внутри дыхательного контура возрастает. Этот рост давления нивелируется удалением избытка дыхательной смеси из контура через предохранительный клапан. Удаляемый газ поступает в атмосферу операционной или, что предпочтительнее, в специальную систему отвода отработанных медицинских газов. Во всех предохранительных клапанах давление сброса можно регулировать.
При самостоятельном дыхании предохранительный клапан должен быть полностью открыт, с тем чтобы давление в контуре лишь незначительно изменялось во все фазы дыхательного цикла.Вспомогательная и принудительная ИВЛ требуют положительного давления на вдохе. Частичное закрытие предохранительного клапана ограничивает сброс дыхательной смеси, позволяя создать положительное давление в контуре при сжатии дыхательного мешка.
Г. Дыхательный мешок (мешок-резервуар). Дыхательный мешок функционирует как резервуар дыхательной смеси; он также необходим для обеспечения положительного давления при ИВЛ. По мере заполнения растяжимость мешка увеличивается. В этом процессе можно отчетливо выделить три фазы. После заполнения дыхательного мешка для взрослых объемом в 3 л (I фаза) давление быстро возрастает до пиковых значений (II фаза). При дальнейшем повышении объема давление достигает плато или даже немного снижается (III фаза). Этот эффект позволяет предохранить легкие от баротравмы в том случае, если предохранительный клапан непреднамеренно закрыт, а свежая дыхательная смесь продолжает поступать в контур.
Функциональные характеристики контуров Мэйплсона
Контуры Мэйплсона легкие, недорогие, простые и не требуют применения направляющих клапанов. Эффективность дыхательного контура измеряется скоростью потока свежей дыхательной смеси, необходимой для предотвращения рециркуляции углекислого газа (т. е. повторного поступления его в дыхательные пути). Поскольку в контурах Мэйплсона не предусмотрены направляющие клапаны и адсорберы CO2, рециркуляцию предотвращают путем сброса выдыхаемой смеси через предохранительный клапан до вдоха. Обычно это возможно при большом потоке свежей дыхательной смеси.
При самостоятельном дыхании альвеолярный газ, содержащий CO2, будет поступать в дыхательный шланг или сбрасываться в атмосферу через открытый предохранительный клапан. Если поток свежей дыхательной смеси превышает альвеолярный минутный объем дыхания (МОД), то перед вдохом оставшийся в дыхательном шланге альвеолярный газ будет вытесняться в атмосферу через предохранительный клапан. Если объем дыхательного шланга равен дыхательному объему или превышает его, то последующий вдох будет содержать только свежую дыхательную смесь. Поскольку поток свежей дыхательной смеси, равный МОД, позволяет избежать рециркуляции, то эффективность контура Мэйплсона А — самая высокая среди контуров Мэйплсона при самостоятельном дыхании.