Функции ретикулярной формации еще не вполне понятны. Ретикулярная формация участвует в:
- регуляции возбудимости коры: уровня осознания стимулов и реакций, ритма сон/ бодрствование (восходящая активирующая ретикулярная система);
- придании аффективно-эмоциональных аспектов сенсорным стимулам, особенно болевым, за счет передачи афферентной информации в лимбическую систему;
- двигательной регуляции, особенно связанной с так называемыми жизненно важными рефлексами (кровообращения, дыхания, глотания, кашля и чихания), требующими координации нескольких афферентных и эфферентных систем;
- регуляции позы и целенаправленных движений.
Этот перечень свидетельствует о невозможности четкого различения в ретикулярной формации цента сенсорной и интегративной систем. С другой стороны, недавно стало ясно, что некоторые ее области можно различать по анатомическим, функциональным и химическим свойствам (например, серотонинергических ядра шва и норадренергическое голубое пятно). Скорее всего, по мере расширения наших знаний о ретикулярной формации, представление о неспецифичной системе будет пересмотрено.
Таламус считается входными воротами и распределительным пунктом, через которые все афферентные системы получают доступ к филогенетически более молодым церебральным структурам, обеспечивающим осознание сенсорных стимулов и сознательное целенаправленное поведение.
Анатомический и функциональный обзор
Правый таламус можно разделить на несколько функционально и/или анатомически различимых ядер, каждое из которых связано со своей корковой областью. Для обобщей ориентации сгруппируем эти ядра в следующие четыре функциональных класса:
- специфичные переключающие и перерабатывающие ядра кожных сенсорных органов, глаза и уха;
-ядра с преимущественно двигательными функциями;
-ядра с ассоциативными функциями;
- неспецифичные ядра без определенных корковых мишеней.
Таламические переключающие ядра сенсорных органов
Эти переключающие и перерабатывающие структуры связаны с корковой областью, отвечающей за их сенсорную модальность, и в свою очередь регулируются (возбуждаются и тормозятся) этой областью.
Неспецифичные ядра
Эта категория включает медиальные области, примыкающие к третьему желудочку мозга, а также интраламинарные ядра. Это высшие перерабатывающие и распределительные пункты для афферентной информации, конвертирующей на ретикулярной формации мозгового ствола. Сигналы от спинного мозга приходят сюда непосредственно по палеоспиноталамическому тракту и непрямо – по спиноретикулярному.
Двигательные ядра
Самое главное из них вентролатеральное (ВЛ), связывающее мозжечок и базальные ганглии с двигательной корой. Хирургические воздействия на соответствующие участки ВЛ могут ослабить двигательные расстройства (например, паркинсонизм).
Ассоциативные ядра
Эти части таламуса соединены с корой, но не могут быть отнесены к какой-либо определенной сенсорной системе; они принимают участие в интегратнвных функциях головного мозга.
Специфичное таламическое ядро соматосенсорной системы
Из-за своего анатомического положения этот участок лемнисковой системы называется вентробазальным ядром (ВБ) или вентробазалъным комплексом. В нем выделяют вентральное постеролатеральное (ВПЛ) и вентральное постеромедиальное (ВПМ) ядра. В ВПЛ находится нейронное представительство туловища и конечностей, а в ВПМ — лица. Главный проводящий путь, который ведет к ВПЛ, - это медиальный лемнисковый тракт, а к ВПМ тройнично-таламический тракт, начинающийся от главного сенсорного ядра тройничного нерва.
В опытах на наркотизированных животных установлены следующие функциональные особенности ВБ-нейронов:
-каждый из них обладает определенным рецептивным полем для механических стимулов кожи;
- рецептивные поля тем меньше, чем дистальнее они находятся на конечностях;
- соседние участки тела проецируются на соседние участки ВБ (пример соматотопической организации);
- каждый нейрон возбуждается главным образом рецептором одного типа (например, рецепторами МА или волосяных фолликулов в коже);
- импульсация нейрона усиливается с ростом интенсивности периферической стимуляции, т.е. интенсивность кодируется так же, как у кожных механорецепторов.
2.11 Соматосенсорные проекционные области в коре
Вентробазальный комплекс таламуса соединен как восходящими, так и нисходящими аксонами с двумя корковыми зонами – SI и SII (S означает «соматосенсорная область»). SI расположена на постцентральной извилине непосредственно позади глубокой центральной борозды, проходящей поперек полушария. SII лежит на верхней стенке боковой борозды, разделяющей теменную и височную доли. SI филогенетически моложе SII и очень важна у высших млекопитающих (особенно у приматов); она участвует во всех функциях соматосенсорной системы, зависящих от хорошего пространственно-временного различения стимулов. Некоторые из этих функций можно исследовать, например по методу двухточечного порога кожи (рис. 2.5)
Рис. 2.5. Рецептивные поля нейронов в вентробазальном ядре таламуса. Микроэлектрод, проводимый через таламус наркотизированной кошки, прошел 10 нейронов, отвечающих на механическую стимуляцию кожи. Их рецептивные поля находились, как показано, на левой передней конечности.
Топографическая организация соматосенсорной коры
Соматотошпеское представительство периферии тела находится в ковтралатеральной SI, организовано поразительно подробно и было тщательно изучено. Вся поверхность тела здесь картирована причем у приматов даже имеются множествен проекции кисти. Сходное, хотя и менее четкое, картирование свойственно и SII, где оно частично билатерально. Соматотопическую opганизацию сенсорной коры изучают несколькими методами. У человека во время операции на головном мозгу применяют ее локальную электрическую стимуляцию с целью вызывать ощущения локализованные в соответствующих участках тела. Можно также с помощью радиоактивного ксенона измерять локальный корковый кровоток во время стимуляции кожи. У животных для картирования коркового представительства периферии тела использовали анализ вызванных потенциалов и запись активности одиночных нейронов.
Электрическая стимуляция коры мозга человека
При ряде нейрохирургических операций проводят локальную электрическую стимуляцию коры бодрствующего больного (для анестезии места разреза). Вызываемые этим ощущения воспринимаются так, как будто возникают на периферии. Систематическое обследование таким способом SI позволило получить картину, приведенную на рис. 2.6.
Рис. 2.6. Соматотопическая организация корковой зоны SI человека. Изображения над поперечным срезом мозга (на уровне постцентральной извилины) и их обозначения демонстрируют пространственное представительство поверхности тела в коре, установленное путем локальной электрической стимуляции мозга бодрствующих больных.
Этот «соматосенсорный гомункулус» – сильно искаженная карта периферической сенсорной поверхности с непропорционально крупными представительствами областей пальцев и pта. У человека они особенно густо иннервированы и, как показали психофизические опыты, характеризуются прекрасной пространственной разрешающей способностью, т. е. низкими двухточечными порогами. Очевидно, эти два факта причинно связаны, причем такая связь существует и в случае других сенсорных систем: чем больше рецепторов и центральных нейронов приходится на 1 мм2 сенсорной поверхности, тем лучше пространственное разрешение ею стимулов.
Переработка информации в нейронах соматосенсорной коры
Колонки корковых нейронов. При прохождении микроэлектрода перпендикулярно поверхности постцентральной извилины последовательно встречаемые им нейроны часто обладают идентичными или широко перекрывающимися рецептивными полями. Если же электрод перемещается под углом к этой поверхности, он проходит нейроны с соседними, но четко разграниченными рецептивными полями (в соответствии с соматотопической организацией). Из этих и других данных сделан вывод, что соматосенсорная кора, как и двигательная, организована в виде функциональных единиц-колонок нейронов, перпендикулярных ее поверхности.
Рецепторная специфичность колонок
Адекватная избирательная стимуляция, например, различных кожных рецепторов показывает, что нейроны одной колонки возбуждаются обычно рецепторами только одного типа. Очевидно, колонки – это функциональные единицы, соответствующие положению и сенсорной специфике периферических сенсорных нервных окончаний.
Простые и сложные нейроны
Характеристики импульсации простых корковых нейронов очень близки к таковым у связанных с ними рецепторов. Например, в SI есть нейроны, ведущие себя как рецепторы БА. Корковые нейроны, отвечающие на периферические стимулы импульсацией, явно отличающейся от той, что свойственна связанным с ними рецепторам, называются сложными. Этот термин охватывает разнообразные клетки. Среди них известны нейроны, которые реагируют только на стимулы, движущиеся линейно по поверхности кожи, и дают максимальный ответ на движение в определенном направлении. Они обнаружены в SI, SII и ассоциативных областях теменной коры.