Смекни!
smekni.com

Катаболизм гема (стр. 1 из 3)

Содержание

Введение

Катаболизм гема: образование желчных пигментов

Поглощение билирубина печенью

Конъюгация билирубина

Секреция билирубина в желчь

Метаболизм билирубина в кишечнике

Гипебилирубинемии

Неконъюгированная гипербилирубинемия

Конъюгированная гипербилирубинемия

Билирубиновая энцефалопатия

Уробилиноген в моче

СПИСОК ЛИТЕРАТУРЫ


Введение

Сведения по биохимии порфиринов и гема являются основой, необходимой для понимания различных функций гемопротеинов в организме (транспорт кислорода, транспорт электронов, метаболизм лекарственных соединений и т.д.). Порфирии – это группа заболеваний, обусловленных нарушениями биосинтеза различных порфиринов. Эти заболевания встречаются сравнительно редко, но практикующие врачи должны о них знать; больные порфирией могут обратиться к дерматологам, гепатологам и психиаторам; сравнительно часто встречается желтуха, обусловленная повышением содержания в плазме крови билирубина. Это повышение может быть вызвано либо чрезмерным образованием билирубина, либо нарушением его экскреции; оно наблюдается при многих заболеваниях, от вирусного гепатита до рака поджелудочной железы.


КАТАБОЛИЗМ ГЕМА: ОБРАЗОВАНИЕ ЖЕЛЧНЫХ ПИГМЕНТОВ

При физиологических условиях в организме взрослого человека разрушается 1—2108 эритроцитов в час. Таким образом, в течение суток у человека массой 70 кг обновляется приблизительно 6 г гемоглобина. При разрушении гемоглобина его белковая часть (глобин) может быть использована как таковая или после гидролиза в форме составляющих ее аминокислот; железо гема включается в общий пул железа и также снова используется. Вместе с тем свободная от железа порфириновая часть гема обязательно деградирует; это в основном происходит в ретикулоэндотелиальных клетках печени, селезенки и костного мозга. Катаболизм гема, освобожденного из любых гемовых белков, осуществляется в микросомальной фракции ретикулоэндотелиальных клеток сложной ферментной системой – гем-оксигеназой. К моменту поступления гема из гемовых белков в гем-оксигеназную систему железо обычно окисляется в ферри-форму (гем превращается в гемин); гемин может легко связываться с альбумином с образованием метгемальбумина. Гем-оксигеназная система индуцируется субстратом. Она локализована около микросомальной системы транспорта электронов. Гемин восстанавливается в ферро-форму с помощью NADPH; далее при участии NADPH кислород присоединяется к а-метенильному мостику между пиррольными кольцами I и II. Ферро-форма железа снова окисляется в ферри-форму. При последующем присоединении кислорода происходит освобождение ферри-иона, выделение молекулы оксидауглерода (II) и образование в результате раскрытия тетрапиррольного кольца эквимолярного количества биливердина IX - a. В этой реакции сам гем участвует в роли катализатора.

У птиц и земноводных зеленый пигмент биливердин IX - a экскретируется из организма; у млекопитающих растворимый фермент биливердинредуктаза катализирует восстановление метенильного мостика между пирролами III и IV в метиленовую группу, в результате образуется желтый пигмент билирубин IX - a. По расчету из 1 г гемоглобина образуется 35 мг билирубина. Суточное образование билирубина у взрослого человека составляет приблизительно 250—350 мг.

Химическое превращение гема в билирубин ретикулоэндотелиальными клетками можно наблюдать invivo: в гематоме обусловленный гемом пурпурный цвет медленно переходит в желтый цвет билирубина.

Дальнейшей метаболизм билирубина в основном происходит в печени. Он складывается из трех процессов: 1) поглощение билирубина паренхимальными клетками печени; 2) конъюгация билирубина в гладком эндоплазматическом ретикулуме и 3) секреция билирубина из эндоплазматического ретикулума в желчь. Рассмотрим каждый из процессов в отдельности.

Поглощение билирубина печенью

Билирубин слаборастворим в плазме и воде; в плазме он специфически связывается с альбумином. Каждая молекула альбумина имеет, по-видимому, два центра связывания билирубина — высоко- и низкоаффинный. В 100 мл плазмы может содержаться 25 мг билирубина, прочно связанного с альбумином по его высокоаффинному центру. «Избыточный» билирубин связывается с альбумином менее прочно; он легко отделяется от альбумина, диффундируя в ткани. Ряд соединений — антибиотики и некоторые другие лекарственные вещества — конкурируют с билирубином за высокоаффинный центр альбумина. Эти соединения могут вытеснять билирубин из комплекса с альбумином и проявляют значительное клиническое действие.

В печени происходит переход билирубина от альбумина на синусоидальную поверхность гепатоцитов при участии насыщаемой системы переноса, в функционировании которой участвует некий переносчик. Эта система облегченного транспорта имеет очень большую емкость и даже при патологических условиях не лимитирует скорость метаболизма билирубина. Поскольку система облегченного транспорта обеспечивает установление равновесия билирубина по обе стороны синусоидальной мембраны гепатоцита, поглощение билирубина зависит от его потребления в последующих метаболических процессах.

Конъюгация билирубина

Впечени к билирубину присоединяются полярные группы и он переходит в водорастворимую форму, которая секретируется в желчь. Процесс, обеспечивающий повышение растворимостив воде (т. е. повышение полярности) билирубина, называется конъюгацией. Этот процесс, по крайней мере на начальных стадиях, протекает в гладком эндоплазматическом ретикулуме и осуществляется специальным набором ферментов. У млекопитающих билирубин секретируется в желчь преимущественно в форме билирубиндиглюкуронида(рис. 1).

Рисунок 1 - Структура билирубиндиклюкуронида (конъюгированный «прямой» билирубин).

Глюкуроновая кислота присоединяется эфирной связью к двум группам пропионовой кислоты с образованием ацилглюкуронида (М – метильная группа, V – винильная)

Сначала происходит образование билирубинмоноглюкуронида, которое катализируется UDP-глюкуронилтрансферазой— ферментом, присутствующим в гладком эндоплазматическом ретикулуме и состоящим, вероятно, из нескольких компонентов. Катализируемая реакция представлена на рис. 2.

Рисунок 2 - Конъюгирование билирубина с глюкуроновой кислотой

Донором глюкуроната является UDP-глюкуроновая кислота, образующаяся из UDP-глюкозы.

Она протекает главным образом в печени, а также в почках и слизистой кишечника. При нарушении метаболизма билирубина его конъюгаты находятся в сыворотке преимущественно в форме моноглюку-ронидов.

Образование диглюкуронида билирубина может происходить в канальцах мембраны гепатоцитов при участии UDP-глюкуронилтрансферазы, подобной рассмотренной выше (рис. 1) или другого фермента дисмутазы, которая катализирует превращение двух молекул билирубинмоноглюкуронида в молекулу билирубиндиглю-куронида и молекулу свободного билирубина (рис. 2). Система конъюгации билирубина будет рассматриваться ниже в связи с наследственными нарушениями ее работы.

Активность UDP-глюкуронилтрансферазы может индуцироваться рядом используемых в клинике лекарств, в частности фенобарбиталом.

Есть данные, что еще в древности Митридат систематически принимал небольшие дозы ядов, чтобы избежать острого отравления. "Эффект Митридата" основан на индукции определенных защитных систем: фенобарбитал индуцирует систему цитохрома Р-450, глутатион- и УДФ-глюкуронилтрансферазы и эпоксидгидролазы; дибунол (бутилокситолуол) и бутилоксианизол - эти же трансферазы и ферменты синтеза глутатиона; противораковые лекарства - Р-гликопротеин и синтез глутатиона; металлы вызывают накопление обоих видов связывающих их SH-веществ. В результате возрастает устойчивость клеток и организма к ядам и лекарствам. Так, снотворное действие фенобарбитала постепенно все больше снижается. Курсовое введение фенобарбитала у новорожденных увеличивает связывание и, следовательно, обезвреживание свободного билирубина при наследственном дефекте этой системы или гемолитической желтухе.

Секреция билирубина в желчь

Секреция конъюгированного билирубина в желчь идет против весьма высокого градиента концентрации и должна осуществляться с помощью механизма активного транспорта. Активный транспорт является, вероятно, скорость-лимитирующей стадией всего процесса метаболизма билирубина в печени. Транспорт конъюгированного билирубина из печени в желчь индуцируется теми же лекарствами, которые способны индуцировать конъюгацию билирубина. Таким образом, системы конъюгации билирубина и его вывода из гепатоцитов работают как единый функционально координируемый механизм.

При физиологических условиях практически весь секретируемый в желчь билирубин (свыше 97%) находится в конъюгированной форме. Только после светотерапии заметные количества неконъюгированного билирубина могут быть обнаружены в желчи.

В печени имеются многочисленные системы секреции в желчь природных и синтетических лекарственных соединений после их метаболизма. Некоторые из этих систем используются также билиру-биндиглюкуронидами.

МЕТАБОЛИЗМ БИЛИРУБИНА В КИШЕЧНИКЕ

После того как билирубин достигает области подвздошной и толстой кишок, глюкурониды гидролизуются специфическими бактериальными ферментами (р-глюкуронидазами); далее кишечная микрофлора восстанавливает пигмент с образованием группы бесцветных тетрапиррольных соединений, называемых уробилиногенами.

В подвздошной и толстой кишках небольшая часть уробилиногенов снова всасывается и попадает в печень, т.е. осуществляется внутрипеченочный уробилиногеновый цикл. При патологических состояниях, например при накоплении избыточных количеств желчных пигментов или при заболеваниях печени, нарушающих работу внутрипеченочного цикла, уробилиноген может экскретироваться с мочой.