Смекни!
smekni.com

Лекарственные растения, обладающие гепатопротекторным действием (стр. 2 из 6)

5. Свободные радикалы. Образование свободных радикалов и реактивных метаболитов является важным механизмом повреждения клеток. Можно обозначить следующие реактивные молекулы, играющие роль в развитии некротического повреждения гепатоцитов: супероксидный радикал, гипохлорит, хлорамины, синглетный кислород, пероксирадикалы, гидроксильный радикал.

1.2 Иммунные механизмы гепатотоксичности

Выделяют несколько основных механизмов повреждения печени посредством молекулярных механизмов, относящихся к иммунным реакциям: функционирование киллерных лимфоцитов и клеточных коопераций, образование неоантигенов и аутоантител, действие медиаторов (цитокины, оксид азота), активация системы комплимента [11].

1. Иммуноаллергическая гепатотоксичность. Электрофильные метаболиты могут, ковалентно связываясь с белками, образовывать гаптены. Окислительное повреждение белков в результате образования или транслокации дисульфидных связей, а также окисления радикалов аминокислотных остатков ведет к формированию новых антигенных детерминант. Иммунный ответ возможен против гаптенов и неоантигенов. Аутоантитела выявляются при иммуноаллергических гепатитах, вызванных рядом лекарств. Модифицированные белки оказывают 2 эффекта:

1) как антигены инициируют образование циркулирующих антител;

2) запускают лимфоцитоопосредованную цитотоксичность.

2. Цитотоксические лимфоциты. Цитотоксичность лимфоцитов занимает видное место в патогенезе различных заболеваний печени. Выделяют, по крайней мере, два основных механизма проявления цитотоксичности лимфоцитов. Во-первых, Т-лимфоциты способны находить антигены клеток-мишеней и активироваться при взаимодействии с ними. При этом выделяются цитотоксические агенты, которые вызывают цитолиз клеток-мишеней. Во-вторых, высказывается предположение, что лимфоцит-опосредованная гибель клеток является процессом, не зависящим от присутствия ионов кальция. Предполагают, что изменению проницаемости плазматической мембраны клеток-мишеней при межклеточном взаимодействии предшествует эндонуклеазный гидролиз.

3. Цитокины. Образование цитокинов - это важный элемент поддержания гомеостаза организма. Однако если имеется гиперпродукция цитокинов возможно повреждение печени. Большинство цитокинов образуется в печени при действии различных стимулов. g-ИФН продуцируется гепатоцитами в процессе вирусной инфекции. ФНО-a синтезируется клетками Купфера при действии целой гаммы гепатотропных повреждающих агентов. Провоспалительные цитокины ФНО-a, ИЛ-1 и ИЛ-6 секретируются клетками Купфера при гепатитах. Этот эффект сопряжен с синтезом белков острой фазы и повышением адгезии нейтрофилов в синусоидах. Эти же цитокины лежат в основе действия многих бактериальных токсинов. Считают, что ФНО-a и ИЛ-1 определяют механизмы некроза и нарушения транспортных систем, ИЛ-6 стимулирует синтез белков острой фазы, ИЛ-8 служит потенциальным хемоаттрактантом для нейтрофилов. g-ИФН и липополисахариды через индукцию NO-синтазы усиливают продукцию оксида азота, токсичного для внутриклеточных патогенных факторов (микобактерии, лейшмании) и опухолевых клеток печени [11].

4. Система комплимента. Система комплимента состоит из каскада белков плазмы крови. Многие из них синтезируются в печени. Активация системы происходит при связывании С1-компонента с иммунным комплексом. Она сопровождается повышением фагоцитоза опсонизированных микроорганизмов (С3b), активацией клеток Купфера и нейтрофилов и др. Процесс служит для формирования атакующего мембрану комплекса на клеточной поверхности (C5b-С9). Этот механизм реализуется в печени при эндотоксемии, ишемии-реперфузии, действии свободных радикалов кислорода и иммунных реакциях.

5. Клеточные кооперации. Показано, что клетки Купфера играют важную роль в развитии повреждения печени. Можно описать следующую последовательность событий: повышение концентрации поступившего через портальную вену эндотоксина - активация клеток Купфера и освобождение ими хемоаттрактантов, включая интерлейкины, лейкотриен В4, С5-компонент комплимента - поступление нейтрофилов из циркуляции - активированные нейтрофилы с рецепторами молекул адгезии прилипают к синусоидальным эндотелиальным клеткам, а молекула адгезии способствуют миграции лейкоцитов в паренхиму печени - активированные нейтрофилы продуцируют свободно-радикальные формы кислорода, которые вызывают разные типы повреждения, например, активацию перекисного окисления мембран - макрофаги печени продуцируют токсические медиаторы и вызывают агрегацию тромбоцитов, что ведет к микротромбозам - развивается локальная гипоксия - появляются лобулярные некротические поражения.

Цитотоксичность ряда гуморальных факторов связана с особенностями синусоидальных эндотелиальных клеток. В отличие от других видов эндотелия, синусоидальный эндотелий фенестрирован и не имеет базальной мембраны. При печеночных венозно-окклюзионных заболеваниях, после трансплантации костного мозга и некоторых других состояниях повреждение эндотелиальных клеток является начальным этапом Т-лимфоцитопосредованной иммунной реакции. Сужение малых внутрипеченочных вен с развитием микротромбозов ведет к нарушению оттока крови и развитию ишемии печени с вторичным повреждением гепатоцитов. Некоторые лекарственные препараты (дакарбазин) и химические компоненты многих растений проявляют селективную токсичность по отношению к синусоидальным клеткам, инициируя развитие вено-окклюзионной патологии печени.

1.3 Механизм гепотапротекторного действия различных действующих веществ растений

Гепатопротекторный эффект флавоноидов проявляется в ослаблении действия повреждающих факторов, в том числе некоторых химических соединений (четыреххлористого углерода, хлороформа, бензола и др.). Механизм действия флавоноидов заключается в ингибировании перекисного окисления липидов, уплотнение сосудисто-тканевых мембран, сохранение уровня эндогенной аскорбиновой кислоты и гликогена печени. Установлено, что под влиянием кверцетина, лютеолина и других флавоноидов содержание гликогена в печени увеличивается на 38,7-85,9% .

Немаловажное значение имеет способность флавоноидных соединений образовывать комплексы с ионами тяжелых металлов, что послужило основанием для успешного применения некоторых полифенолов в качестве антидотов при отравлении тяжелыми металлами. В настоящее время самым популярным лекарственным растением, как источника гепатопротекторов, является расторопша пятнистая (легален, красил, силимар, силибор, экстракт расторопши жидкий и др.).

Механизм гепатопротекторного действия кверцетина, флавоноида расторопши и некоторых других растений, обусловлен связыванием токсичных свободных радикалов и стабилизацией клеточных мембран и лизосом (что свойственно и другим флавоноидам). Кроме того, под влиянием катергена происходит стимуляция биосинтеза АТФ в печени, тем самым облегчается протекание биохимических реакций, связанных с затратой энергии и фосфорилирование в печени. Он обладает мембраностабилизирующим действием, уменьшая проницаемость клеточных мембран для низкомолекулярных водорастворимых соединений, транспортируемых путем свободной и обменной диффузии.

Механизм гепатопротекторного действия флаволигнанов обусловлен их способностью взаимодействовать со свободными радикалами, реализующийся за счет наличия в их структуре подвижного водорода, используемого для ликвидации свободных радикалов по схеме:

R-AnH → AnH-RH,

где R — свободный радикал;

AnH — антиоксидант в радикальной форме;

RH — нейтрализованный радикал;

АnН — антиоксидант, содержащий подвижный водород.

Флаволигнаны плодов расторопши, взаимодействуя со свободными радикалами, замедляют интенсивность радикальных реакций с уменьшением активности и концентрации образующихся токсичных перекисных продуктов и таким образом восстанавливают и стимулируют репаративные процессы, стабилизируют биологические мембраны клеток органов гепатобилиарной системы, ингибируют перекисное окисление липидов в биологических мембранах, предотвращая глубокое деструктивные нарушения в печени, тормозят избыточное образование жирных кислот и холестерина, активируют функции естественной антиокислительной защиты. Антиоксидантный эффект флаволигнанов плодов расторопши пятнистой приводит к усилению антитоксической функции печени. Кроме того, силибин и другие флаволигнаны стимулируют синтез РНК в гепатоцитах, что способствует ускорению регенерации печени.

Содержащийся в расторопше, силибинин блокирует ФДЭ, что способствует замедленному распаду цАМФ, и, следовательно, стимулирует снижение концентрации внутриклеточного кальция в гепатоцитах и снижает кальций-зависимую активацию фосфолипаз. Для стабилизации мембраны также имеют значение антиоксидантные и метаболические свойства силибинина. Силибинин способен связывать радикалы благодаря фенольной структуре и прерывать процессы ПОЛ. При этом он тормозит как образование малонового диальдегида, так и повышенное поглощение кислорода. Силибинин способствует значительному повышению содержания восстановленного глутатиона в печени, тем самым, повышая защиту органа от окислительного стресса, поддерживая ее нормальную дезинтоксикационную функцию.

Метаболическое действие силибинина состоит в стимуляции синтеза протеинов и ускорении регенерации поврежденных гепатоцитов. Силибинин стимулирует РНК-полимеразу I в клеточном ядре и активирует транскрипцию и скорость синтеза РНК, а, следовательно, и белка в клетках печени. Стимуляция белоксинтетической функции гепатоцитов имеет большое значение для процессов регенерации в печени. При этом силибинин не оказывает влияния на скорость редупликации и транскрипции в измененных клетках с максимальным уровнем синтеза ДНК, что исключает возможность пролиферативного действия