Смекни!
smekni.com

Методы физиологических исследований (стр. 7 из 14)

9. Постэкспериментальный уход за животным должен свести до минимума дискомфорт и последствия травмы, нанесенной животным в результате опыта, в соответствии с принятой практикой ветеринарной медицины.

10. Если необходимо умертвить экспериментальное животное, то это дела­ют так, чтобы достичь мгновенной гибели. Ни одно животное не должно быть уничтожено до тех пор, пока не наступит его смерть».

Почти во всех случаях поведенческого и нейрологического тестирования, которые описаны в последующих главах, необходимо брать животных в руки. Животное нужно приучать к этой процедуре на протяжении нескольких дней перед началом опыта. Такое обращение предполагает доставание животного рукой из клетки, помещение его на стол, осторожное поглаживание и перенесение с одного места на другое. Со временем животные перестают сопротивляться таким процедурам, если их осуществлять бережно.

Не держите животное за хвост и старайтесь не прихватить кожу и сильно не надавливать на животное. Лучше брать животное сзади под лопатки, подводя большой палец под одну переднюю конечность, а остальные пальцы – под вторую конечность. Сила захвата животного должна соответствовать сте­пени его сопротивления. Если животное держать так, чтобы его передние конечности перекрещивались, то оно не сможет укусить.

При частом взятии на руки лабораторные крысы становятся довольно ручными и ими легко управлять. Для введения препаратов желательно использовать помощника, при этом вторую ру­ку экспериментатор использует для вытягивания задних конечностей животного. При достаточной практике внутрибрюшинные инъекции можно производить самостоятельно, путем захвата зад­них конечностей крысы и одновременного инъецирования ее другой рукой.

Перед инъекцией полезно успокоить животное; для этого нужно захватить животное так, как это описано выше, и затем медленно раскачивать его вперед и назад по широкой дуге.

Обычным методом маркировки крыс является нанесение на уши животного прорезей или отверстий, пока оно находится под наркозом. Уши животного тонкие и не очень кровоточат. Предпочтительным является метод маркировки тела и хвоста каким-либо биологическим красителем, например желтой пикриновой кислотой или красным карбофуксином. Такая бинарная система позволяет осуществить индивидуальное кодирование 63 крыс. (Если исполь­зуете несколько крыс, то кодируйте их только четными числами, так как это уменьшает число необходимых отверстий или меток.)

АППАРАТУРА И МЕТОДЫ ИЗУЧЕНИЯ ФИЗИОЛОГИЧЕСКИХ ФУНКЦИЙ

Успехи современной физиологии в изучении функций целостного организма, его систем, органов, тканей и клеток во многом обусловлены широким внедрением в практику физиологического эксперимента электронной техники, анализирующих устройств и электрон­ных вычислительных машин, а также биохимических и фармакологических методов исследования. В последние годы в физиологии качественные методы дополняют количественными, что позволяет определять изучаемые параметры различных функций в соответствующих единицах измерения. Совместно с физиологами в разработке новых методических подходов участвуют физики, математики, инже­неры и другие специалисты.

Быстрое совершенствование электронной техники открыло новые пути для познания многих физиологических процессов, что ранее было принципиально невозможно.

Создание разнообразных систем датчиков, преобразующих неэлектрические процессы в электрические, совершенствование измеритель­ной и регистрирующей аппаратуры позволили разработать новые, высокоточные методы объективной регистрации (например, биотеле­метрия) физиологических функций, что в значительной мере расширило возможности эксперимента.

СХЕМА СВЯЗЕЙ МЕЖДУ ПРИБОРАМИ И ОБЪЕКТАМИ ИССЛЕДОВАНИЯ

При исследовании физиологических функций с использованием различной аппаратуры в эксперименте и клинике формируют своеобразные системы. Их можно разделить на две группы: 1) системы для регистрации различных проявлений жизнедеятельности и анализа полученных данных и 2) системы для воздействия на организм или его структурно-функциональные единицы.

Для того, чтобы наглядно представить взаимодействия отдельных элементов системы, необходимо рассмотреть их в виде блок-схем. Такие блок-схемы и их символы удобно использовать студентам для иллюстрации протоколов экспериментов во время практических занятий. По нашему мнению, подобная форма изображения хотя бы части условий эксперимента значительно сократит его описание и будет способствовать пониманию схем устройств и приборов.

Блок-схемы, отражающие основные формы взаимодействия между объектом исследования и различными устройствами для регистрации функций.

Многие функции организма можно исследовать без электронной аппаратуры и регистрировать процессы либо непосредственно, либо после некоторых преобразований. Примерами могут служить измерение ртутным термометром температуры, регистрация сердечных сокращений с помощью пишущего рычажка и кимографа, регистрация дыхания с использованием капсулы Марэ,плетизмография с применением водяного плетизмографа, определение пульса и т. д. Реальные схемы установок для плетизмографии, регистрации моторики желудка и записи дыхания приведены на рис.

Блок-схема системы, позволяющей регистрировать биоэлектрические процессы в организме, показана на рис. \, В. Она состоит из объекта исследования, отводящих электродов, усилителя, регистратора и блока питания. Регистрирующие системы такого рода используют для электрокардиографии, электроэнцефалографии, электрогастрографии, электромиографии и др.

При исследовании и регистрации с помощью электронной аппаратуры целого ряда неэлектрических процессов необходимо их предварительно преобразовать в электрические сигналы. Для этого используют различные датчики. Одни датчики сами способны генерировать электрические сигналы и не нуждаются в питании от источника тока, другим это питание необходимо. Величина сигналов датчика обычно невелика, поэтому для регистрации их необходимо предварительно усиливать. Системы с применением датчиков используют для баллистокардиографии, плетизмографии, сфигмографии, регистрации двигательной активности, кровяного давления, дыхания, определения газов в крови и выды­хаемом воздухе и т. д.

Если системы дополнить и согласовать с работой радиопередатчика, то становится возможным передавать и регистри­ровать физиологические функции на значительном расстоянии от объекта исследования. Этот метод получил название биотелеметрии. Развитие биотелеметрии определяется внедрением микроминиатюри­зации в радиотехнику. Она позволяет исследовать физиологические функции не только в лабораторных условиях, но и в условиях свободного поведения, во время трудовой и спортивной деятельности, независимо от расстояния между объектом исследования и исследователем.

Системы, предназначенные для воздействия на организм или его структурно-функциональные единицы, оказывают различные влияния: пусковые, стимулирующие и тормозящие. Методы и варианты воздействия могут быть самыми разнообразными.

При исследовании дистантных анализаторов стимулирующий импульс может восприниматься на расстоянии, в этих случаях стимулирующие электроды не нужны. Так, например, можно воздействовать светом на зрительный анализатор, звуком - на слуховой и различными запахами - на обонятельный.

В физиологических экспериментах в качестве раздражителя часто используют электрический ток, в связи с чем широкое распространение получили электронные импульсные стимуляторы и стимулирующие электроды. Электрическую стимуляцию применяют для раздражения рецепторов, клеток, мышц, нервных волокон, нервов, нервных центров и т. д. При необходимости может быть применена биотелеметрическая стимуляция (рис. 4, В). Причем воздей­ствия на организм могут быть как локальными, так и общими

Исследования физиологическихфункций проводят не только в состоянии покоя, но и при различныхфизических нагрузках. Последние могут создаваться либо. выполнением определенных упражнений (приседания, бег и т. д.), либо с помощью различных устройств (велоэргометр, бегущая дорожка и др.), дающих возможность точно дозировать нагрузку.

Регистрирующие и стимулирующие системы часто используют одновременно, что значительно расширяет возможности физиологических экспериментов. Эти системы можно комбинировать в различных вариантах.

ЭЛЕКТРОДЫ

В физиологических исследованиях электроды являются связующим звеном между объектом исследования и приборами. Они применяются для нанесения разряжения или регистрации (отведения) биоэлектрической активности клеток, тканей и органов, поэтому их принято подразделять на стимулирующие. Один и тот же электрод может быть использован и как стимулирую­щий, и как отводящий, так как принципиальной разницы между ними нет.

В зависимости от способа регистрации или раздражения различают биполярные и униполярные электроды. При биполярном способе чаще используют два одинаковых электрода, при униполярном – электроды различаются и по функциональному назначению, и по конструкции. В этом случае активный (дифферентный) электрод располагают в зоне отведения биопотенциалов или на участке ткани, который нужно стимулировать.

Активный электрод, как правило, имеет относительно небольшие размеры по сравнению с другим пассивным (индифферентным) электродом. Индифферентный электрод обычно фиксируют на некотором удалении от активного. При этом необходимо, чтобы зона фиксации индифферентного электрода либо не имела собственного потенциала (например, умерщвленный участок ткани, жидкая электропроводная среда, окружающая объект исследования), либо этот участок должен быть выбран с более низким и относительно стабильным потенциалом (например, мочка уха). Индифферентные электроды часто представляют собой пластины из серебра, олова, свинца или другого металла.