Федеральное агентство по здравоохранению и социальному развитию
ГОУ ВПО «Алтайский государственный медицинский университет» Росздрава
Факультет «Сестринское дело»
Заочное отделение
КОНТРОЛЬНАЯ РАБОТА
по дисциплине: «Микробиология»
Вариант - 3
Составил: студент 285 группы
факультета «Сестринское дело»
Дубиненко О.С.
Барнаул - 2008
Раздел «Общая микробиология и вирусология»
Вопрос 1. Биологический смысл спорообразования у бактерий. Бациллы, клостридии, примеры. Особенности химического состава и методы выявления
Споры бактерий можно рассматривать как форму сохранения наследственной информации бактериальной клетки при неблагоприятных условиях воздействия внешней среды [1, с. 25].
К спорообразующим относится большое число эубактерий приблизительно из 15 родов, характеризующихся морфологическим и физиологическим разнообразием.
Среди них имеются палочковидные, сферические, мицелиальные формы, спириллы и нитчатые организмы. Все они имеют строение клеточной стенки, характерное для таковой грамположительных эубактерий. Ни в одном случае не выявлена наружная липопротеиновая мембрана, несмотря на то, что многие роды и виды спорообразующих бактерий не окрашиваются по Граму.
По типу питания среди них обнаружены хемоорганогетеротрофы, факультативные хемолитоавтотрофы и паразитические формы. Отношение к кислороду также разнообразно: часть спорообразующих форм представлена аэробами и факультативными анаэробами, другая часть включает облигатных анаэробов — от аэротолерантных форм до высокочувствительных к O2.
Лучше всего процесс спорообразования изучен у представителей родов Bacillus и Clostridium, хотя имеющиеся данные позволяют сделать вывод о принципиальной однотипности этого процесса у всех видов, образующих эндоспоры. В каждой бактериальной клетке, как правило, формируется одна эндоспора [1, с. 32].
Первым шагом к спорообразованию является изменение морфологии ядерного вещества вегетативной клетки, образующего тяж вдоль длинной оси спорулирующей клетки.
Приблизительно 1/3 тяжа затем отделяется и переходит в формирующуюся спору [1, с. 32].
У некоторых видов ядерный тяж образуется только на одном полюсе клетки, в его формировании участвует не весь генетический материал вегетативной клетки, и впоследствии ядерный тяж целиком переходит в формирующуюся спору. Биологический смысл формирования ядерного тяжа до сих пор остается невыясненным.
Формирование споры начинается с того, что у одного из полюсов клетки происходит уплотнение цитоплазмы, которая вместе с генетическим материалом, представляющим собой одну или несколько полностью реплицированных хромосом, обособляется от остального клеточного содержимого с помощью перегородки.
Последняя формируется впячиванием внутрь клетки ЦПМ. Мембрана нарастает от периферии к центру, где срастается, что приводит к образованию споровой перегородки. Эта стадия формирования споры напоминает клеточное деление путем образования поперечной перегородки.
Следующий этап формирования споры — «обрастание» отсеченного участка клеточной цитоплазмы с ядерным материалом мембраной вегетативной клетки, конечным результатом которого является образование проспоры — структуры, расположенной внутри материнской клетки и полностью отделенной от нее двумя элементарными мембранами: наружной и внутренней по отношению к проспоре.
Описанные выше этапы формирования споры (вплоть до образования проспоры) обратимы. Оказалось, что если к спорулирующей культуре добавить антибиотик хлорамфеникол (ингибитор белкового синтеза и, следовательно, ингибитор синтеза мембранных белков), то можно остановить «обрастание» клеточной мембраной отсеченного септой участка цитоплазмы, и процесс спорообразования превратится в процесс клеточного деления.
После образования проспоры дальнейшие этапы спорообразования уже необратимы.
Между наружным и внутренним мембранными слоями проспоры начинается формирование кортикального слоя (кортекса). Затем поверх наружной мембраны проспоры синтезируются споровые покровы, состоящие из нескольких слоев, число, толщина и строение которых различны у разных видов спорообразующих бактерий. В формировании слоев споровых покровов принимает участие как наружная мембрана споры, так и протопласт материнской клетки.
У многих бактерий поверх покровов споры формируется еще одна структура — экзоспориум, строение которого различно в зависимости от вида бактерий. Часто экзоспориум многослойный, с характерной для каждого слоя тонкой структурой. Все слои, окружающие протопласт эндоспоры, находятся внутри материнской клетки. На их долю приходится примерно половина сухого вещества споры.
После сформирования споры происходит разрушение (лизис) «материнской» клеточной стенки, и спора выходит в среду [4, с. 85].
Спорообразование сопровождается активным синтезом белка. Белки эндоспор в отличие от белков вегетативных клеток богаты цистеином и гидрофобными аминокислотами, с чем связывают устойчивость спор к действию неблагоприятных факторов.
Содержание ДНК в споре несколько ниже, чем в исходной вегетативной клетке, поскольку в спору переходит лишь часть генетического материала материнской клетки. Генетический материал поступает в спору в виде полностью реплицированных молекул ДНК. Споры некоторых видов содержат по 2 или 3 копии хромосомы.
Содержание РНК в спорах ниже, чем в вегетативных клетках, и РНК в значительной степени при спорообразовании синтезируется заново. Одним из характерных процессов, сопровождающих образование эндоспор, является накопление в них дипиколиновой кислоты и ионов кальция в эквимолярных количествах. Эти соединения образуют комплекс, локализованный в сердцевине споры. Помимо Са2+ в эндоспорах обнаружено повышенное содержание других катионов (Mg2+, Mn2+, K+), с которыми связывают пребывание спор в состоянии покоя и их термоустойчивость [4, с. 85].
Существенные отличия эндоспор от вегетативных клеток выявляются при изучении химического состава отдельных споровых структур. Экзоспориум состоит из липидов и белков и, вероятно, выполняет функцию дополнительного барьера, защищающего спору от внешних воздействий, а также регулирующего проникновение в нее различных веществ. Однако никаких данных, подтверждающих эти предположения, пока нет. Механическое удаление экзоспориума не приводит к какому-либо повреждению спор.
Они обнаруживают такую же способность к прорастанию, как и споры с неудаленным экзоспориумом.
Споровые покровы в основном состоят из белков и в небольшом количестве из липидов и гликолипидов. Белки покровов обладают высокой устойчивостью к неблагоприятным условиям и обеспечивают спорам защиту от действия литических ферментов, других повреждающих факторов, а также предохраняют спору от преждевременного прорастания. Оказалось, что споры мутантов, лишенные покровов, прорастают сразу же после выхода из материнской клетки, даже если условия для последующего роста неблагоприятны. Кортекс построен в основном из молекул особого типа пептидогликана. При прорастании споры из части кортекса, прилегающей к внутренней споровой мембране, формируется клеточная стенка вегетативной клетки.
В отличие от эндоспор, образующихся внутри материнской клетки и окруженных двумя элементарными мембранами, экзоспоры бактерий из рода Methylosinus и Rhodomicrobium формируются в результате отпочкования от одного из полюсов материнской клетки. Образование экзоспор сопровождается уплотнением и утолщением клеточной стенки. У экзоспор отсутствуют дипиколиновая кислота и характерные для эндоспор структуры (кортекс, экзоспориум).
У актиномицетов споры являются покоящимися клетками и одновременно репродуктивными структурами. По типу образования они делятся на две группы — эндогенные и экзогенные. Эндогенное образование спор внутри цитоплазмы материнской гифы, обнаруженное у представителей родов Thermoactinomyces и Actinobifida, протекает аналогично описанному выше. У большинства актиномицетов споры формируются экзогенно путем деления гифы перегородками на участки, каждый из которых представляет собой будущую спору. Экзоспоры большинства актиномицетов не содержат каких-либо дополнительных внутренних структур помимо тех, которые наблюдаются в вегетативной клетке. Стенка споры обычно значительно толще, чем стенка гифы, и в ней можно различить несколько слоев разной электронной плотности. Часто клеточная стенка окружена дополнительными наружными покровами.
Покоящиеся клетки эубактерий характеризуются низкими уровнями метаболической активности. В первую очередь это касается дыхания. От степени снижения метаболической активности зависит длительность сохранения жизнеспособности покоящихся клеток. Большой интерес представляет выяснение механизмов, ответственных за поддержание специализированных клеток в состоянии покоя. В настоящее время наибольшее внимание привлекают три гипотезы. Первая основана на том, что в покоящихся клетках имеются вещества, ингибирующие ферменты и, следовательно, блокирующие метаболизм. Из спор некоторых бактерий действительно выделены вещества, предотвращающие прорастание спор. Согласно второй гипотезе сохранение покоя связывают со структурой спор, обеспечивающей поддержание ее сердцевины в обезвоженном состоянии. Наконец, поддержание покоя объясняют особым состоянием ферментов. Изменения их конфигурации, приводящие к активированию ферментов, выводят покоящуюся клетку из этого состояния. Возможно, что поддержание специализированных клеток в состоянии покоя — результат совместного действия всех описанных выше механизмов.
Для всех покоящихся форм характерна повышенная по сравнению с вегетативными клетками устойчивость к действию разнообразных повреждающих факторов: высоких и низких температур, обезвоживанию, высокой кислотности среды, радиации, механических воздействий и др. В наибольшей степени эта устойчивость проявляется у эндоспор. Механизмы устойчивости в настоящее время мало изучены. Для эндоспор основными факторами, обеспечивающими их устойчивость к действию неблагоприятных условий среды, предположительно является нахождение споровой цитоплазмы в обезвоженном состоянии, термостойкость споровых ферментов, а также наличие дипиколиновой кислоты и большого количества двухвалентных катионов. Большой вклад в устойчивость спор вносят поверхностные структуры (мембраны, кортекс, покровы), механически защищающие содержимое споры от проникновения извне агрессивных веществ. Механизм устойчивости к неблагоприятным факторам, основанный на дегидратации клеточных структур, имеет место и у других покоящихся форм эубактерий, так как все они характеризуются пониженным содержанием воды сравнительно с вегетативными клетками.