Смекни!
smekni.com

Мікроорганізми як джерело створення безпечних антимікробних засобів (стр. 3 из 6)

Рибосоми — округлі рибонуклепротеїнові тільця діаметром 15-20 нм, що розташовані довільно в цитоплазмі бактерій і складаються на 40 % із білка і на 60 % із РНК. їх кількість у клітині залежить від інтенсивності синтезу білка і може коливатися від 5000 до 90 000. Рибосоми прокаріотів мають константу седиментації 70 S, від чого і дістали назву 70 S-частинок. Вони побудовані з двох рибонуклеопротеї-нових субодиниць: малої 30 Sі великої 50 S. Мала субодиниця побудована з однієї молекули 16 SРНК і переважно з однієї молекули кожного з білків 21 виду. Велика субодиниця містить дві молекули РНК (23 Sі 5 S) та по одній копії білків 34 видів. Більша частина рибосомальних білків виконує структурну функцію.

За коефіцієнтом седиментації* та деякими іншими властивостями, до бактеріальних рибосом подібні рибосоми мітохондрій і хлоропластів еукаріотних клітин. Рибосоми є центрами синтезу білка в клітині. Під час синтезу білка вони набувають форми агрегатів, які називаються полірибосомами. Ці полісоми містяться у цитоплазмі або зв'язані з мембранними структурами.

Генетичний апарат. Тривалий час точилася дискусія про наявність у бактеріальній клітині ядра, подібного до ядра, що міститься в еукаріотних клітинах. Тепер ні в кого не виникає сумніву щодо наявності генетичного апарату в клітинах прокаріотів. Як і в еукаріотів він представлений молекулами ДНК, але між ними існують істотні відмінності у структурній організації. У прокаріотній клітині, на відміну від еукаріотної, ядерний апарат не відмежований від цитоплазми мембраною та займає певну ділянку в цитоплазмі. Враховуючи цю відмінність, ядерний апарат у прокаріотів запропоновано називати нуклеоїдом. Він міститься всередині цитоплазми і складається з гігантської молекули ДНК у формі замкненої в кільце подвійної спіралі, довжина якої у ціанобактерій може сягати 3 мм. Нуклеоїд у прокаріотів ще називають бактеріальною хромосомою.

Встановлено, що вміст пар нуклеотидних основ у молекулі ДНК бактеріальної хромосоми А+Т і Г+Ц є постійним для даного виду організму. Це відкриття стало важливою діагностичною ознакою бактерій. У молекулі ДНК нуклеоїда зосереджена майже вся генетична інформація прокаріотної клітини. Реплікація ДНК генетичного апарату бактерій відбувається за напівконсервативним механізмом і в нормі завжди передує поділу клітини. Отже, нуклеоїд прокаріотів є основним носієм спадкових властивостей клітини і основним фактором у передачі цих властивостей потомству [1].

У клітинах багатьох прокаріотів поряд з бактеріальною хромосомою містяться і позахромосомні кільцеві молекули ДНК, що дістали назву плазмідів. Вони здатні до автономної реплікації і зумовлюють деякі спадкові властивості бактерій, наприклад, здатність до кон'югації, резистентність до антибіотиків тощо.

Внутрішньоцитоплазматичні включення. В цитоплазмі прокаріотів різних видів містяться також включення, що оточені білковою мембраною і функціонують як структури. До них належать хлоросоми, фікобілісоми, аеросоми, магнітосоми і карбоксисоми. Серед включень, у яких відсутня мембрана, трапляються ті, що є місцем запасання поживних речовин та концентрування продуктів клітинного обміну, які відкладаються всередині прокаріотних клітин. За консистенцією вони бувають рідкі, тверді та газоподібні.

Хлоросоми — внутрішньоцитоплазматичні включення, які беруть певну участь у процесі фотосинтезу зелених бактерій. Вони мають форму пухирців, завдовжки 100-150 і завширшки 25—70 нм, оточені одношаровою щільною білковою мембраною, завтовшки 2—3 нм. У хлоросомах містяться бактеріохлорофіли. Хлоросоми розташовані біля цитоплазматичної мембрани.

Фікобілісоми характерні для ціанобактерій. Як і хлоросоми, вони беруть участь у процесі фотосинтезу. Ці включення мають напівсферичну форму і розташовуються правильними рядами на зовнішній поверхні фотосинтетичної мембрани. У фікобілісомах містяться водорозчинні пігменти білкової природи — фікобіліпротеїни.

Карбоксисоми — структури, що мають вигляд багатокутників, виявлені в клітинах фототрофних і хемолітотрофних еубакте-рій. Вони оточені одношаровою мембраною білкової природи і містять рибулозодифосфаткарбоксилазу — фермент, який бере участь у процесі фіксації СО2 у відновному пентозофосфатному циклі [1].

До включень, які мають пристосувальне значення належать магнітосоми і аеросоми. Магнітосоми виявлені в клітинах бактерій, яким притаманний магнітотаксис, тобто здатність плавати вздовж ліній магнітного поля, наприклад Aquaspirillummagneto-tacticum. Магнітосоми являють собою частинки Fe3O4, оточені мембраною. У різних видів прокаріотів магнітосоми можуть мати різну форму і різне розміщення в їхніх клітинах.

Аеросоми або газові вакуолі виявлено у представників 15 таксономічних груп (ціанобактерії, пурпурні, галобактерії, клостридіїта ін.). Вони оточені білковими мембранами завтовшки до 2 нм і за формою нагадують бджолині соти. Пухирці аеросом заповнені газом, подібним до газу довкілля. Вважають, що вони виконують функцію регуляторів плавучості цих організмів. Завдяки аеросомам бактерії можуть займати в товщі води найбільш вигідне положення щодо вмісту в ній поживних речовин, кисню, освітлення тощо.

До включень, які виконують роль запасних поживних речовин, належать полісахариди, ліпіди, поліпептиди, поліфосфати тощо. Із включень полісахаридної природи в клітинах найчастіше відкладаються глікоген, крохмаль і гранульоза (крохмалеподібна речовина). У випадку несприятливих умов ці сполуки використовуються прокаріотами як джерело вуглецю і енергії.

Ліпіди нагромаджуються в клітинах у вигляді гранул і крапельок жиру, зокрема таким включенням часто є полімер (3-оксимасляної кислоти. Накопичення ліпідів у клітинах надзвичайно інтенсивно відбувається тоді, коли середовище багате на вуглеводи та бідне на азот. Як і полісахариди, ліпіди є для бактерій добрим джерелом вуглецю і енергії.

Дуже поширеними запасними речовинами у багатьох прокаріотів є поліфосфати, які дістали назву волютину (метахроматинові гранули). Волютин нагромаджується в оцтовокислих, молочнокислих, азотфіксуючих та інших видах бактерій. Гранули волютину складаються переважно із поліфосфатів, а тому його найчастіше розглядають як внутрішньоклітинний резерв фосфору. Він використовується клітиною як джерело фосфору і енергії.

У ціанобактерій виявлено специфічні ціанофіцинові запасні речовини поліпептидної природи, які містять аспарагінову кислоту і аргінін. Поява цих включень під час культивування ціанобактерій з азотом і зникнення їх за виснаження середовища на азот дає підстави вважати, що вони є резервом азоту в разі браку його в середовищі. До включень, що їх відносять до продуктів клітинного метаболізму, належать виявлені в цитоплазмі деяких бактерій кристалоподібні включення білкової природи ромбоподібної, кубічної та інших форм. Ці утворення виявились дуже токсичними для гусениць шкідливих комах [5].

Для багатьох сіркобактерій характерне відкладання в клітинах молекулярної сірки як продукту клітинного обміну. Для аеробних тіонових бактерій, які окислюють H2S, сірка є джерелом енергії, а для анаеробних фотосинтезуючих сіркобактерій вона є донором електронів. У сіркобактерій із роду Achromatium виявлено включення у вигляді гранул карбонату кальцію, фізіологічне значення якого досі ще не з'ясовано.

У бактерій родів Caedobacterі Pseudomonasвиявлено включення білкової природи, округлої форми, які заломлюють світло. Вони дістали назву R-тілець. Формування їх визначається вірусними або плазмідними генами. Функції R-тілець досі ще не вивчені.

РОЗДІЛ 2. МОЖЛИВОСТІ ВИКОРИСТАННЯ МІКРОБІОЛОГІЧНИХ ПРЕПАРАТІВ ДЛЯ БОРОТЬБИ ІЗ ШКІДНИКАМИ

2.1 Мікробіологічні інсектициди

Мікробіологічні інсектициди забезпечили новий летальний фактор для боротьби з деякими рослиноїдними шкідниками сільськогосподарських культур або лісу. Рівень чисельності популяції шкідника не впливає на ефективність цих препаратів. Для боротьби з комахами, що мають значення в медицині і ветеринарії, мікробіологічні інсектициди ще не розроблені, за винятком екзотоксину Bacіllus thurіngіensіs, що активно діє проти мух і вший (у даний час ще не використовується у виробничих масштабах).Число мікробіологічних інсектицидів дуже не велике в порівнянні з числом хімічних препаратів. Однак в обмеженому числі випадків, коли вони можуть використовуватися, вони настільки ж ефективні, як найкращі хімічні препарати, хоча вони часто коштують набагато дорожче. Препарати, що містять Bacіllus thurіngіensіs (ВТ), дозволені і використовуються у виробничих масштабах для боротьби з деякими шкідливими лускокрилими. Методи виробництва і складання препаратів добре розроблені. Число видів сприйнятливих метеликів велике й усі зростає і на щастя включає лише далеко не всі корисні види. Віруси поліедрозу і гранульозу численні, але вони більш специфічні, хоча в сукупності мають дуже широке коло хазяїнів і настільки ж перспективні в боротьбі зі шкідниками, як і ВТ. Велика перевага мікробіологічних інсектицидів полягає не тільки в їхній нешкідливості для людини і домашній тварин, але також у їхній специфічності, оскільки корисною комахою вони, видимо, заподіюють не більше шкоди, чим хижаки. Однак така специфічність, часто тільки для одного виду, може виявитися і недоліком, коли необхідно вести боротьбу одночасно з декількома шкідниками. Іншими недоліками, крім високої вартості порівняно з хімічними препаратами, є звичайно відсутність контактної дії, а іноді і здатність заражати тільки одну стадію розвитку шкідника.

Хімічні інсектициди порівняно мало діють на патогени комах, хоча окремі фунгіциди можуть ушкоджувати них; у той же час хімікати можуть підсилювати дія деяких патогенів. У СРСР біля Києва побудований завод для виробництва гриба Beauverіa bassіana.