Смекни!
smekni.com

Общая нозология. Типовые патологические процессы (стр. 10 из 41)

В условиях длительного или интенсивного действия холода возможно перенапряжение и истощение механизмов терморегуляции, после чего температура тела снижается и наступает вторая стадия охлаждения – стадия декомпенсация, или собственно гипотермия. В этом периоде кроме снижения температуры тела отмечается снижение обменных процессов и потребления кислорода; жизненно важные функции угнетены. Нарушение дыхания и кровообращения приводит к кислородному голоданию, угнетению функций ЦНС, снижению иммунологической реактивности. В тяжелых случаях возможны необратимые изменения в тканях, влекущие за собой смерть. Во второй стадии гипотермии тесно переплетены явления патологические и приспособительные. Более того, одни и те же сдвиги, являясь, с одной стороны, патологическими, с другой стороны могут быть оценены как приспособительными. Например, угнетение функций ЦНС можно назвать охранительными, так как понижается чувствительность нервных клеток к недостатку кислорода и дальнейшему снижению температуры тела. Снижение обмена в свою очередь уменьшает потребность организма в кислороде. В состоянии гипотермии организм становится менее чувствительным к самым разнообразным неблагоприятным воздействием внешней среды – недостатку кислорода и пищи, интоксикации, инфекции, поражающему действию электрического тока, перегрузкам и т.д.

Искусственная гипотермия (гибернация) – контролируемое снижение температуры тела до заданных величин, необходимое для проведения сложных операций на жизненно важных органах (мозг, сердце, легкие). Данное состояние создается при помощи физического охлаждения на фоне применения фармакологических препаратов, блокирующих проведение нервных импульсов.

Тема 5. Экстремальные и терминальные состояния

Под экстремальными (лат. extremus – крайний, предельный) состояниями организма понимают такие состояния, которые возникают под влиянием сильных (чрезвычайных) патогенных воздействий и характеризуются предельным напряжением защитных реакций организма. Такие состояния могут возникать вследствие внешних воздействий и при неблагоприятном течении различных заболевания. К наиболее часто встречающимся экстремальным состояниям относятся стресс, кома и шок. Для патогенеза экстремальных состояний характерно развитие цепных патологических реакций, усугубляющих возникшие в организме расстройства («порочных кругов»). Экстремальные состояния, в принципе, самостоятельно обратимы. Организм обладает приспособительными механизмами, препятствующими включению «порочных кругов» или вызывающими их «обрыв», тем самым, предупреждая самоуглубления повреждений. Однако они, как правило, требуют неотложных и эффективных лечебных мероприятий.

Стресс представляет собой неспецифический компонент адаптации, который играет мобилизирующую роль и обуславливает привлечение энергетических и пластических ресурсов для специфической адаптационной перестройки различных систем организма.

Основоположник учения о стрессе Ганс Селье (1907 – 1983) – врач по образованию, биолог с мировым именем, директор Института экспериментальной медицины (с 1976г. Международный институт стресса) в Монреале – на протяжении почти пятидесяти лет разрабатывал проблемы общего адаптационного синдрома и стресса.

Селье экспериментально доказал, что при введении неочищенных и токсичных вытяжек из желез возникал стереотипный набор одновременных изменений в органах. Этот синдром включал:

1) увеличение и повышенную активность коры надпочечников;

2) сморщивание или атрофию вилочковой железы и лимфатических узлов;

3) появление язвочек желудочно-кишечного тракта.

В дальнейшем весь этот комплекс изменений в организме получил название классической триадой Г. Селье.

Развитие стресса во времени Селье разделил на три стадии:

1) реакцию тревоги, для которой характерно уменьшение размеров тимуса, селезенки и лимфатических узлов, количества жировой ткани, появление язв желудка и кишечника, исчезновение эозинофилов в крови и гранул липидов в надпочечниках. Под действием очень сильных стрессоров (тяжелые ожоги, крайне высокие или крайне низкие температуры) организм может погибнуть уже на этой стадии.

2) стадию резистентности, возникающей, если действие стрессора совместимо с возможностями адаптации, которая характеризуется практически полным исчезновением признаков реакции тревоги; уровень сопротивляемости организма значительно выше обычного.

3) стадию истощения.

Если стрессор слабый или же прекратил свое действие, то стадия резистентности продолжается длительное время или организм приспосабливается, приобретая новые свойства. Если стрессорный фактор является чрезвычайно сильным или же действует длительно, то развивается стадия истощения. Вновь появляются признаки реакции тревоги, но теперь они необратимы, что приводит к гибели организма.

По мнению Селье, важную роль в реакциях стресса играли гормоны. Экстренное выделение адреналина – это лишь одна сторона острой фазы первоначальной реакции тревоги в ответ на действие стрессора. Для поддержания гомеостаза столь же важна ось гипоталамус – гипофиз – кора надпочечников, представляющей собой координированную систему, которая состоит из гипоталамуса, который связан с гипофизом, регулирующим активность коры надпочечников. Стрессор возбуждает гипоталамус, продуцируется вещество, дающее сигнал гипофизу выделять в кровь адренокортикотропный гормон (АКТГ). Под влиянием АКТГ корковый слой надпочечников выделяет кортикоиды. Это приводит к сморщиванию вилочковой железы и многим другим сопутствующим изменениям – атрофии лимфатических узлов, торможению воспалительных реакций и продуцированию глюкозы (легкодоступный источник энергии). Другая типичная черта стрессорной реакции – образование язвочек в желудочно-кишечном тракте. Их возникновению способствует высокое содержание кортикоидов в крови, но и автономная нервная система также играет роль в их появлении.

Стрессорная реакция у человека возникает благодаря сложному взаимодействию нейроэндокринной системы. Сигнал о каком-то воздействии мгновенно поступает в кору головного мозга, оттуда информация передается в гипоталамус. Именно в гипоталамусе расположены высшие координирующие и регулирующие центры вегетативной и эндокринной систем; здесь чутко улавливаются малейшие нарушения, возникающие в организме. Под гипоталамусом находится гипофиз, который относится к эндокринной системе. Гипофиз синтезирует целый ряд гормонов, некоторые из которых влияют на деятельность других эндокринных желез. К тропным гормонам относятся АКТГ, который воздействует на кору надпочечников; тиреотропный гормон, который регулирует функцию щитовидной железы, и гонадотропные гормоны, которые стимулируют функцию половых желез. Кроме того, гипофиз синтезирует гормоны, которые непосредственно воздействуют на организм, например, гормон роста (соматотропный гормон) и пролактин. Синтез и отдача гормонов гипофиза регулируются гормонами гипоталамуса, которые попадают в гипофиз через особые, соединяющие эти отделы кровеносные сосуды. Оказалось, что в гипоталамусе существуют особые клетки, выделяющие сложные химические соединения, так называемые рилизинг-факторы (реализующие факторы).

Стресс-реакция может проявляться в виде двух синдромов:

1) генерализованного адаптационного синдрома – ГАС (общий адаптационный синдром – ОАС);

2) местного адаптационного синдрома – МАС.

Генерализованный адаптационный синдром.

Стрессор, действуя на организм, помимо специфических изменений запускает начальную реакцию, которая состоит в выработке неспецифического стимула. Это может быть нервный импульс, химическое вещество или недостаток незаменимого метаболического фактора. Этот первый медиатор, в конечном счете, действует на гипоталамус и, в частности, на срединное возвышение. Это действие регулируется посредством нервных стимулов, поступающих от коры головного мозга, ретикулярной формации и лимбической системы (в частности, гипокампа и миндалевидного комплекса). Клетки гипоталамуса действуют как «преобразователи», трансформирующие нервные импульсы в гуморальный передатчик – кортикотропин-релизинг-фактор – КРФ. КРФ достигает передней доли гипофиза и стимулирует секрецию кортикостероидов, главным образом, таких как кортизол или кортикостерон. С этими гормонами связаны следующие эффекты:

1. Вызывают глюгонеогенез, обеспечивая тем самым легко доступный источник энергии для реакции адаптации.

2. Облегчают осуществление различных других регулируемых ферментами адаптивных обменных реакций.

3. Подавляют иммунные реакции, воспаление. Подавление выработки антител под влиянием АКТГ и кортизона может играть защитную роль в иммунологических реакциях неспецифической природы. Известно, что в пораженных тканях происходит изменение их антигенных свойств, поэтому они могут быть источником аутосенсибилизации организма. Гормоны, уменьшая образование антител, тем самым предотвращают явление аутоагрессии тканей.

4. Обуславливают тимиколимфатическую инволюцию, эозинопению и лимфопению, характерные для острого стресса. Инволюция тимиколимфатической система и лимфопения, с одной стороны, связаны с разрушением лимфоидных клеток (катотоксическое действие глюкокортикоидов, в результате которого образующиеся при распаде аминокислоты используются в глюконеогенезе), а с другой стороны, лимфоидные клетки мигрируют в костный мозг, что приводит к активации гранулоцитопоэза и развитию нейтрафилеза, т.е. в крови нарастает количество микрофагов.