Смекни!
smekni.com

Окисление ненасыщенных жирных кислот. Биосинтез холестерина. Мембранный транспорт (стр. 2 из 3)

Главным исходным материалом для биосинтеза этих гормонов является аминокислота тирозин. Ее источник в клетках –

1. Протеолиз

2. Образование из фенилаланина (незаменимой АК)

Биосинтез стероидных гормонов несмотря на разнообразный спектр их действия, является единым процессом.

Центральное положение в биосинтезе всех стероидных гормонов занимает прогестерон.

Имеются 2 пути его синтеза:

Из холестерина

Из ацетата

В регуляции скоростей биосинтеза отдельных стероидных гормонов важнейшую роль играют тропные гормоны гипофиза. АКТГ стимулирует биосинтез кортикальных гормонов надпочечников.

Имеются 3 причины расстройства биосинтеза и выделения специфических гормонов:

1. Развитие патологического процесса в самой эндокринной железе.

2. Нарушение регуляторных влияний на процессы со стороны ЦНС.

3. Нарушение координации деятельности отдельных желез внутренней секреции.

Биосинтез холестерина.

Этот процесс насчитывает 35 стадий.

Можно выделить 3 основные:

1. Превращение активного ацетата в мевалоновую кислоту

2. Образование сквалена

3. Окислительная циклизация сквалена в холестерин.

Холестерин является предшественником многих стероидов:

Стероидов кала, желчных кислот, стероидных гормонов. Распад холестерина – это превращение его в желчные кислоты в печени.

Показано, что регуляция биосинтеза холестерина осуществляется путем изменения синтеза и активности b-гидрокси-b-метил глутарил КоА-редуктазы. Этот фермент локализован в мембранах эндоплазматической сети клетки. Его активность зависит от концентрации холестерина, приводит к снижению активности фермента. Регуляция активности редуктазы холестерином – пример регуляции ключевого фермента конечным продуктом по принципу отрицательной обратной связи.

Существует и второй путь биосинтеза мевалоновой кислоты.

Два автономных пути имеют значение для внутриклеточного разграничения биосинтеза холестерина необходимого для внутриклеточных нужд (синтез липопротеидов клеточных мембран) от холестерина, идущего на образование жирных кислот. В составе липопротеидов холестерин покидает печень и поступает в кровь. Содержание общего холестерина в плазме крови 130-300 мг/мл.

Молекулярные компоненты мембран.

Большинство мембран состоит примерно из 40% липида и 60% белка. Липидная часть мембран содержит преимущественно полярные липиды различных типов, практически все количество полярных липидов клетки сосредоточено в ее мембранах.

Большинство мембран содержит мало триацилглицеринов и стеринов, исключением в этом смысле являются плазматические мембраны клеток высших животных с характерным для них высоким содержанием холестерина.

Соотношение между различными липидами постоянно для каждого данного типа мембран клетки и, следовательно, определяются генетически. Большинство мембран характеризуется одинаковым соотношением липида и белка. Почти все мембраны легко проницаемы для воды и для нейтральных липофильных соединений, в меньшей степени проницаемы для полярных веществ, таких как сахара и амиды и совсем плохо проницаемы для небольших ионов, таких как натрий или хлор.

Для большинства мембран характерно высокое электрическое сопротивление. Эти общие свойства послужили основой для создания первой важной гипотезы относительно структуры биологических мембран – гипотезы элементарной мембраны. Согласно гипотезе, элементарная мембрана состоит из двойного слоя смешанных полярных липидов, в котором углеводородные цепи обращенных внутрь и образуют непрерывную углеводородную фазу, а гидрофильные головы молекул направлены наружу, каждая из поверхностей двойного слоя липидов покрыта мономолекулярным слоем белка, полипептидные цепи которого находятся в вытянутой форме. Общая толщина элементарной мембраны – 90 ангстрем, а толщина двойного слоя липидов – 60-70- ангстрем.

Структурное многообразие мембран больше, чем исходя из гипотезы элементарной мембраны.

Другие модели мембран:

1. Структурный белок мембраны находится внутри двойного слоя липидов, а углеводородные хвосты липидов проникают в свободные пространства между свернутыми полипептидными цепями белка.

2. Молекулы структурного белка проходят в определенных точках сквозь двойной слой липидов. Аминокислотные участки полипептидной цепи, находящиеся внутри углеводородной фазы, составлены преимущественно из гидрофобных АК.

3. Глобулярная – роль периодически повторяющихся структурных единиц играют небольшие глобулярные липопротеиды или липидные мицеллы, чередующиеся с молекулами глобулярного белка.

Конкретное сочетание липидов в той или иной мембране может определяться структурой мембранных белков, которая закодирована в соответствующих генах. Целостность этих исключительно тонких структур поддерживается только за счет гидрофобных и полярных взаимодействий.

Биомембраны:

В общую структуру мембраны включены поверхностные мембранные белки и интегральные мембранные белки, которые делятся на :

1-структурные и 2-динамические белки.

Мембранный транспорт:

Мембрана является полупроницаемой.

Пассивный транспорт – соединение движется через мембрану из района с высокой концентрацией в район с низкой концентрацией без затраты клеткой энергии – это диффузия.

Активный транспорт – происходит с затратой энергии. Перенос осуществляется против градиента концентрации.

Реакция живых клеток на воздействие различных типов биологически активных веществ, например, гормонов, начинается со связывания вещества с внешней поверхностью клеточной мембраны в специфическом месте поверхности, называемой рецепторами: например, рецептор ацетилхолина, инсулина.

На этой стадии происходит фосфорилирование фермента за счет АТФ и связывания внутриклеточного натрия. На второй стадии (стимулируется ионами калия), происходит гидролиз фосфорилированного фермента и ионы натрия высвобождаются на наружной стороне мембраны.

Большинство клеток содержит натриевый насос другого типа, откачивающий ионы натрия из клетки и обеспечивающий движущую силу для активного переноса аминокислот и глюкозы в клетку. Для систем активного переноса АК необходим в качестве источника энергии направленный внутрь клетки градиент ионов натрия. Большинство клеток содержит системы переноса сахаров. Глюкоза переносится в клетки при помощи переносчика, который переносит в клетку также ионы натрия.

Необходимо учитывать влияние размеров и вязких свойств мембраны, через которую осуществляется перенос. Толщина мембран обычно составляет 60-100 ангстрем. Эти размеры велики по сравнению с размерами молекулы глюкозы или АК (5-6 ангстрем) и даже молекул небольших глобулярных белков (25-35 ангстрем)

Как молекулы переносчики способны перемещать субстраты на такие большие расстояния?

1. Белок переносчик вместе со связанным лигандом перемещается с одной стороны мембраны на другую в результате физической диффузии.

2. Молекулы переносчики вероятно белки фиксированы на мембране, но могут претерпевать конформационные изменения чтобы обеспечить перенос субстрата через мембрану.

Комплексные соединения: один из ионов, обычно положительно заряженный – в центре - центральный ион. Вокруг расположено некоторое число противоположно заряженных ионов или электронейтральных молекул, называемых лигандами.

Аквакомплексы – лиганд вода.

Гемоглобин – гем- центральный ион – ион железа – вокруг него координированы четыре атома азота, принадлежащих к сложному лиганду с циклическими группировками.

Согласно одному из предположений, связывающий белок обладает сильным сродством к транспортируемому веществу (субстрату) и прочно связывается с ним на наружной поверхности клетки. Образовавшийся комплекс белок-субстрат далее диффундирует к внутренней стороне мембраны. Здесь в результате процесса, сопряженного с самопроизвольно протекающей экзергонической реакцией, например, с гидролизом АТФ, конформация белка меняется таким образом, что его сродство к субстрату уменьшается. В результате транспортируемое вещество переходит в клетку, а связывающий белок диффундирует обратно к наружной поверхности. Там его конформация возвращается к исходной, вероятно, под влиянием химических воздействий.

Какие классы молекул и ионов транспортируются через мембраны? Из окружающей среды в клетку поступают неорганические ионы, причем в результате переноса иногда они сильно концентрируются. Клетки слизистой оболочки желудка могут концентрировать ионы водорода в желудочном соке примерно до 0,16 М. В клетки животных и человека активно транспортируются аминокислоты. Обычно наряду с системой, для которой характерны высокое сродство к аминокислоте и способность “перекачивать” из области с очень низкой концентрацией, существуют параллельно функционирующие системы с рецепторами не обладающими столь высоким сродством к субстрату. Сахара в этих системах проходят через внутреннюю мембрану в виде фосфатных эфиров (групповая транслокация).

В другой системе транспорт аминокислот и лактозы сопряжен с системой переноса электронов связанной с мембраной окислительно-восстановительной цепи. Считают, что эта система независима от синтеза АТФ.

Внутриклеточные органеллы имеют собственные системы, концентрирующие ионы. Так митохондрии могут концентрировать ионы калия, кальция, магния и других двухвалентных металлов, а также и дикарбоновые кислоты. У митохондрий транспорт многих веществ происходит скорее всего за счет обменной диффузии, т.е. путем вторичного активного транспорта.