У антральній рідині різних за розміром фолікулів однакового фізіологічного стану яєчника кореляційне відношення за b-глобулінами для ”фолікулярного зростання”, ”раннього” та ”пізнього” жовтого тіла становить, відповідно, h = 0,11, 0,24 та 0,34 і зі ”свіжою” овуляцією h = 0,54. При цьому, у вказаній фракції проявляється слабка залежність вмісту глікопротеїнів (h = 0,21–0,27). При послідовній зміні фізіологічного стану яєчника: ”фолікулярне зростання”®”свіжа овуляція”®”раннє”®”пізнє” жовте тіло та розмірі фолікулів більше 4 мм кореляційне відношення за вмістом b-глобулінів і глікопротеїнів, відповідно, h = 0,53 і 0,34, менше 4мм – h = 0,33 і 0,42.
Аналіз сили зв’язків між g-глобуліновою фракцією білка, її глікопротеїновою частиною, у антральній рідині та діаметром фолікулів статевої залози однакового фізіологічного стану свідчить про сильну залежність між ними за свіжої овуляції (h = 0,56 і 0,37). Для вмісту вказаної фракції у фолікулярній рідині при послідовній зміні фізіологічного стану яєчника: ”фолікулярне зростання”®”свіжа овуляція”®”раннє”®”пізнє” жовте тіло та діаметрі фолікула більше 7мм кореляційне відношення становить для загального вмісту h = 0,57, глікопротеїнового компонента – h = 0,60, 4–7мм, відповідно, h = 0,36 і 0,65 та менше 4мм – h = 0,13 і 0,66. Отже, в яєчнику ”свіжої овуляції” проявляються високий вміст загального білка (7,1–7,8 г%) і глікопротеїнів у зоні g-глобулінів (56,6–68,9 %) та низький – у зоні альбуміну (5,4–11,6%), порівняно з яєчниками інших фізіологічних станів (6,4–7,3 г% та 27,3–35,8 %).
Вміст антиоксидантів в антральній рідині фолікулів та зв’язок з фізіологічним станом яєчників корів.Інтенсивність окисних процесів регулюється рівнем природних антиоксидантів, що підтверджується їх вмістом та співвідношенням відновлених і окиснених форм у фолікулах. Так, в антральній рідині фолікулів яєчників корів вміст відновленої форми глутатіону становить 17,3–33,7 мг%, аскорбінової кислоти – 10,0–21,2 мкг/мл, окиснених форм, відповідно, 10,0–19,1 мг% і 8,3–14,7 мкг/мл, загального глутатіону – 27,0–51,4 мг%, аскорбінової кислоти з окисненими продуктами – 21,9–34,0 мкг/мл. Найвищий вміст відновлених форм антиоксидантів (Г-SH 24,5–33,7 мг%, АА 12,9–21,1 мкг/мл) у період “пізнього” жовтого тіла. Аналіз відношення між відновленими і окисненими формами антиоксидантів виявив найвищий відсоток АА у великому і середньому фолікулах яєчника “фолікулярного зростання” (68,2–71,4 : 35,4–38,6%), та зниження у фолікулах малого розміру всіх інших фізіологічних станів яєчників (59,9–64,0 : 36,1–50,6%) і найменший у великому фолікулі яєчника “свіжої овуляції” (55,4 : 49,2%). Подібні синхронні зміни з АА, відсотку Г-SH та Г-SS-Г у великому і середньому фолікулах “свіжої овуляції” (53,9–59,1 : 40,9–46,1%) свідчать про тісний зв’язок між вказаними антиоксидантами. Найвищий вміст Г-SH (69,4±5,32%) виявлено у великому фолікулі яєчника “пізнього жовтого тіла”.
Дихальна та відновна активності ооцит-кумулюсних комплексів (ОКК) корів in vitro. Закономірності розвитку фолікулів, клітин гранульозного шару, підтверджуються інтенсивністю дихання ооцитів. Виявлена обернена залежність між поглинанням кисню ОКК у середовищі Дюльбеко, 199, Іґла і RPMI–1640 та розміром фолікула, пряма – з наявністю і компактністю кумулюсу (великі за діаметром, без кумулюсу – 0,09–0,19, середні, з розпушеним кумулюсом – 0,11–0,30, малі, з компактним кумулюсом – 0,17–0,47 нг-атом О/ооцит/хв). Отже, ооцити з компактним кумулюсом інтенсивно поглинають кисень, що з втратою компактності – знижується. При дослідженні у ФСБ Дюльбеко після інкубування 24 год, ОКК проявляють вищу дихальну активність: з компактним кумулюсом малого фолікула на 17,6%, з розпушеним кумулюсом середнього фолікула – 36,3% і без кумулюсу великого фолікула – 44,4%. Інкубування ооцитів 24 год у середовищах ТС 199 та Іґла призводить до зменшення дихальної активності, порівняно з свіжоотриманими: у ОКК з компактним кумулюсом малого фолікула, у першому – нижча на 10,3%, другому – на 7,7%; з розпушеним кумулюсом з середнього та без кумулюсу з великого фолікулів у обох середовищах майже не змінюється (ТС 199 – 0,20–0,22 і 0,13–0,14; Іґла – 0,24–0,26 і 0,19–0,22 нг-атом О/ооцит/хв). У RPMI-1640 використання кисню ооцитами з компактним кумулюсом малого фолікула також не змінюється (0,45±0,090 нг-атом О/ооцит/хв), але знижується на 30,0% – з розпушеним кумулюсом середнього фолікула та зростає на 15,7% – без кумулюсу великого фолікула.
Вивчення окремих ланок утилізації кисню показало, що у свіжоотриманих ооцитів при інгібуванні гліколізу дихальна активність зростає: у ОКК з розпушеним кумулюсом у 2,4 рази та без кумулюсу в 2,9 рази і знижується з компактним кумулюсом на 23,6%.
ОКК проявляють реакцію-відповідь на доданий АТФ – споживання кисню зростає з розпушеним кумулюсом на 13,4%, з компактним – на 39,9%, ”голі” не реагують. Через 24 год інкубації знижується реакція – відповідь на доданий АТФ у ОКК з розпушеним і компактним кумулюсом на 37,5–40,0%, що свідчить про здатність забезпечувати енергетичні потреби окисненням запасів власних субстратів та підтримувати даний процес за рахунок клітин – симбіонтів (кумулюсу), а при нестачі поживних речовин у середовищах культивування – можливе зворотне постачання їх з ооцита до клітин кумулюсу. НАД-залежна ділянка ланцюга дихання у ”голих” ооцитів не активна, а в ОКК з компактним кумулюсом, використання кисню зростає на 57,2%, з розпушеним – знижується на 79,1%. Сукцинат стимулює споживання кисню ОКК з компактним кумулюсом на 38,4%, з розпушеним на 70,0% та без кумулюсу на 13,0%. Ооцити проявляють значну інтенсивність немітохондріальних окисних процесів (нг-атом О/ооцит/хв): з компактним кумулюсом 0,10±0,006, без кумулюсу – 0,13±0,006 і з розпушеним – 0,27±0,006.
Вивченням окисно-відновних процесів ооцитів у середовищі RPMI-1640 виявлена пряма залежність між компактністю кумулюсу та інтенсивністю дихання ооцитів (ОКК з компактним кумулюсом 0,47±0,08 нг-атом О/ооцит/хв, нижча на 36,2% з розпушеним і найнижча – 0,19±0,05 нг-атом О/ооцит/хв – без кумулюсу) і обернена – з відновною активністю (без акцептора електронів: ОКК зкомпактним кумулюсом – 16,0±5,55 пкг К3.../ооцит/хв, а ооцити з розпушеним та без кумулюсу виявляють однакову відновну активність – 18,3 пкг К3.../ооцит/хв). Встановлена залежність підтверджує симбіотичні взаємодії ооцитів з кумулюсом (гранульозою). Акцептор електронів у середовищі культивування знижує дихальну активність ооцитів з компактним кумулюсом та ”голих”, відповідно, на 29,8% та 68,5%, а з розпушеним – не змінює (0,31±0,11 нг-атом О/ооцит/хв). При цьому, відновна здатність зростає у всіх групах ооцитів: з компактним і розпушеним кумулюсом у 6,4, без кумулюсу – в 11,1 рази. Гальмування активності гліколізу підвищує дихання ооцитів: на 52,4% з компактним кумулюсом та 22,5% розпушеним і зменшує відновну активність, відповідно, на 58,0% і 40,0%. У ооцитів без кумулюсу дихання не змінюється (0,06±0,00 нг-атом О/ооцит /хв), а відновна здатність підвищується на 32,3%. Використання аміталу знижує дихальну активність у ооцитів з компактним кумулюсом на 89,5% і відновну – на 16,7%, з розпушеним кумулюсом, відповідно, на 67,5% і 42,9%. У ооцитів без кумулюсу дихання не змінюється (0,06 нг-атом О/ооцит/хв), а відновна здатність – знижується на 83,4% (до 50,0±34,00 пкг К3.../ооцит/хв). Отже, при забезпеченні субстратами, ооцити без кумулюсу отримують енергію, головним чином, через гліколіз; з компактним кумулюсом – споживання кисню (генерація АТФ) визначається активністю циклу трикарбонових кислот; з розпушеним кумулюсом займають проміжне місце – підвищений гліколіз та збережене дихання.
При інгібуванні активності ЦХО встановлено у ОКК з компактним кумулюсом істотне підвищення (у 2,4 рази) відновної здатності та зниження використання кисню (до 0,06 нг-атом О/ооцит/хв), з розпушеним – зменшення відновної активності на 85,8% та збільшення споживання кисню на 23,0%. У ооцитів без кумулюсу азид натрію підвищує дихання на 85,0%, а відновну здатність – знижує на 44,6%. При стимулюванні НАДН-редуктазних процесів у ОКК з компактним кумулюсом підвищується споживання кисню (азидрезистентного) та відновна активність, відповідно, на 62,5 та 7,3%; з розпушеним кумулюсом – дихання майже відсутнє (0,09±0,05 нг-атом О/ооцит/хв), а транспорт електронів зростає більше ніж у 12 разів; без кумулюсу – споживання кисню знижується на 75,0%, а відновні процеси – підвищуються на 60,5%. Як наслідок, за рахунок вільнорадикального окиснення жирних кислот, ОКК з компактним кумулюсом споживають 50,0% кисню (азидрезистентного) та транспортують 23,1% відновних еквівалентів; з розпушеним кумулюсом та без кумулюсу – дихальна активність не змінюється, а відновна, відповідно, у перших зростає на 57,2% (до 163,3±24,60 пкг К3.../ооцит /хв), у других – знижується на 23,9%.
Культивування ембріонів.Використання середовищ культивування (ТС 199, Іґла, RPMI-1640) з додаванням фетальної та еструсної сироваток, антиоксидантів, клітин гранульози, гомогенату слизової з верхньої третини рогу матки корів, інсуліну та гепарину забезпечує повноцінний розвиток ембріонів. Ооцити, з компактним кумулюсом запліднюються та розвиваються до бластоцисти, а з іншими морфологічними характеристиками, розвиток до пізніх стадій припиняється. Додавання антиоксидантів 0,01мл на 1мл середовища культивування (суміші відновленої форми глутатіону і аскорбінової кислоти, відповідно, 15,3 і 4,4мг в 1,0мл), проявляє позитивну дію на розвиток ембріонів. Із 79 клітин, через 144 год з моменту запліднення, виявлено 5 ембріонів (6,3%): 4 ранніх і 1 пізня морула. Аналогічні дослідження проведені з використанням середовищ Іґла та RPMI-1640. Отримано ембріонів, відповідно, 5 (7,5%) – 3 ранні і 2 пізні морули із 67 та 6 (8,3%) – 4 ранні і 2 пізні морули із 72 запліднених ооцитів.
Результати досліджень свідчать, що для запліднення ооцитів та вирощування ембріонів найефективніше проводити культивування у два етапи: 1) культивування (16–18 год) і запліднення (16–18 год) ооцитів у середовищах ТС 199, Іґла, RPMI-1640, які містять: 10% фолікулярної рідини, 10% еструсної сироватки крові корів, 10% фетальної сироватки крові, клітини гранульозного шару фолікулів, 0,03% інсуліну (0,13 од/мл), 0,001% гепарину (5 од/мл). Заміну середовища проводити перед заплідненням та після 16–18-годинного спільного культивування ооцитів і сперміїв; 2) культивування ембріонів у середовищах ТС 199, Іґла, RPMI-1640, які містять, крім вище перерахованих компонентів, 10% гомогенату слизової з верхньої третини рогу матки корів. Заміну середовища проводити через кожні 48 год протягом культивування.