Смекни!
smekni.com

Опухоли (стр. 1 из 2)

Реферат на тему:

Опухоли

ОПУХОЛЕВЫЙ РОСТ

Клеточный гомеостаз – количественное и качественное постоянство клеточного состава организма.

Поддержание клеточного гомеостаза – за счет процессов:

а) пролиферации;

б) апоптоза.

РЕГУЛЯЦИЯ ДЕЛЕНИЯ КЛЕТОК

Регуляция деления клеток:а) эндокринная;

б) паракринная;

в) аутокринная.

Эндокринная (=гормональная) регуляция пролиферацииза счет продукции желез внутренней секреции (ЖВС). Основные из них: гипофиз, надпочечники, щитовидная, паращитовидная, поджелудочная и половые железы.

Паракринная регуляция пролиферацииза счет биологически активных веществ, синтезируемых в соседних клетках. Эти биологически активные вещества называются митогенные стимуляторы или ростовые факторы.

Аутокринная регуляция пролиферации – клетка синтезирует ростовые факторы для самой себя, не нуждается в стимулах извне. Результат – автономное, нерегулируемое организмом размножение.

ПЕРЕНОС ПАРАКРИННОГО МИТОГЕННОГО СИГНАЛА

Митогенный сигнал – сигнал к вступлению в фазу удвоения ДНК (фазу S) и после этого к началу митоза.

Перенос паракринного митогенного сигнала участвуют следующие структуры:

1. Митогенные стимуляторы (ростовые факторы).

2. Рецепторы клеточной мембраны.

3. RAS-белки и их связывание в единый активный мультибелковый комплекс.

4. MAP-киназы – специальные ферменты цитоплазмы, которые переносят митогенный сигнал к ядру клетки.

5. Факторы транскрипции – запускают вхождение клетки в S-фазу.

Митогенные стимуляторы (ростовые факторы) – образуются в соседних клетках. Это небольшие белки с относительно короткой полипептидной цепью (например: эпидермальный фактор роста состоит из 53-х аминокислот). Среди них различают семейства стимуляторов и ингибиторов пролиферации. Молекулы митогенных стимуляторов содержат остатки фосфорной кислоты и, следовательно, способны фосфорилировать молекулы веществ, вступающих с ними в реакцию.

Рецепторы клеточной мембраны – взаимодействуют с ростовыми факторами и в результате активируются. Активированные рецепторы передают сигнал через мембрану внутрь клетки. Пример: тирозинкиназные рецепторы (ТКР). Тирозинкиназные рецепторы (ТКР) состоят из цепочки молекул тирозина и имеют 3 (три) части. Каждая часть называется доменом.

Домены:

а) внеклеточный или надмембранный;

б) трансмембранный;

в) подмембранный.

Перенос митогенного сигнала начинается со связывания ростового фактора с первой молекулой тирозина надмембранного домена. Результат реакции: присоединение остатка фосфорной кислоты к первой молекуле тирозина в надмембранном домене (ее фосфорилирование). Этот остаток фосфорной кислоты первая молекула тирозина получила от молекулы ростового фактора. После этого остаток фосфорной кислоты передается по цепочке ко 2-ой молекуле тирозина, затем к 3-ей. Происходит последовательное автофосфорилирование всех 3-х доменов. Перенос митогенного сигнала через мембрану заканчивается, когда остаток фосфорной кислоты присоединится к последней молекуле тирозина в подмембранном домене. Начиная с этого момента, митогенный сигнал нужно передать через цитоплазму к ядру клетки.

RAS-белки и связывание их в единый активный мультибелковый комплекс. RAS-белки – это белки, входящие в состав подсемейства G-белков. Они находятся в подмембранном участке цитоплазмы. Эти белки связываются в единый мультибелковый комплекс. Образование этого комплекса – есть следующий этап передачи митогенного сигнала на подмембранном участке цитоплазмы. Стимул - фосфорилирование последней молекулы тирозина в подмембранном домене.

MAP-киназный каскад. В цитоплазме клеток есть 2 (два) фермента. Их название MAP-киназы.

Стимул для активации MAP-киназ - объединение в единый комплекс подмембранных RAS-белков.

Функции MAP-киназ: перенос митогенного сигнала через цитоплазму к ядру клетки. Митогенный сигнал – суть остаток фосфорной кислоты. MAP-киназы последовательно передают этот остаток фосфорной кислоты через молекулы серина и треонина цитоплазмы к ядру. Другими словами: MAP-киназы обеспечивают последовательное автофосфорилирование молекул серина и треонина в цитоплазме.

В результате – остаток фосфорной кислоты достигает ядра клетки. В ядре клетки остаток фосфорной кислоты активирует группу белков под общим названием «транскрипционные факторы АР-1».

Транскрипционные факторы АР-1. Местонахождение АР-1 – ядро клетки. Химическая природа АР-1 – белки, причем в их состав входят аминокислоты серин и треонин.

Способы активации АР-1. Существуют 2 (два) способа:

1.МАР-киназы доставляют остатки фосфорной кислоты в ядро → фосфорилирование (=присоединение остатка фосфорной кислоты) к серину и треонину АР-1-белков → активация белков АР-1.

2.МАР-киназы активируют гены, кодирующие синтез белков АР-1 → увеличивается образование белков АР-1.

Функция белков АР-1: активация генов, отвечающих за вхождение клетки в S-фазу.

В результате: гены, отвечающие за вхождение клетки в S-фазу, продуцируют свои белки. Эти белки нужны для синтеза вторых цепочек ДНК при удвоении.

ЖИЗНЕННЫЙ ЦИКЛ ЗДОРОВОЙ КЛЕТКИ

1.М (митоз) – событие,которым начинается и заканчивается клеточный цикл.

2.G1промежуток или период. В этот период вновь образованная клетка растет и дифференцируется.

3.Sфаза синтеза ДНК и удвоения нитей ДНК.

4.G2период подготовки к митозу. Идет удвоение клеточных структур.

5.М – следующий митоз.

В периодах интерфазы отмечается несколько важных моментов:

1.R – точка рестрикции. Находиться в периоде G1. В момент R решается вопрос о продолжении подготовки к следующему митозу или переходе в состояние относительного покоя G0. Если клетка переходит в состояние G0. Но клетка может вернуться из состояния относительного покоя и продолжить подготовку к очередному митозу.

2.G1 / S –момент вхождения в фазу S. Это граница между периодами G1 и S. В этот момент проверяется целость и неповрежденность ДНК, которая подлежит удвоению. Если в структуре ДНК обнаруживаются ошибки, то процесс приостанавливается и клетка не пропускается в фазу S. Дальнейшая судьба такой клетки: а) включение механизмов репарации (=восстановления) ДНК; б) индукция апоптоза. Механизм такой проверки называется «checkpoint».

3.G2 / M – момент вхождения в митоз. Это граница между периодом G2 и митозом. Здесь также действует механизм checkpoint. Функции: проверка правильности репликации ДНК и удвоения клеточных структур. При обнаружении ошибок поврежденная клетка в митоз не пропускается и уничтожается методом индукции апоптоза.

СХЕМА ДЕЙСТВИЯ МЕХАНИЗМА «CHECKPOINT»

Механизм «Chtckpoint» обнаруживает повреждение ДНК. У клеток с поврежденной ДНК: а) приостанавливается клеточный цикл;

б) клетка не пропускается в митоз;

в) клетка подвергается апоптозу, если репарация ДНК невозможна.

Механизм индукции апоптоза. В индукции апоптоза участвуют:

= специальные гены-супрессоры;

= их продукция – белки Rbи р53.

Последовательность событий.

1.Обнаружение повреждения в структуре ДНК.

2.Факт обнаружения ошибки – стимул для активации генов-супрессоров.

3.Гены-супрессоры продуцируют белки Rb и р53.

4.Белки Rb и р53 запускают апоптоз поврежденной клетки. Это – индукторы апоптоза.

5.Белок р53 индуцирует апоптоз в момент G1 / S.

6.Белок Rb индуцирует апоптоз в момент G2 / М

Биологическая роль генов-супрессоров. Гены-супрессоры не пропускают в митоз клетку с поврежденной ДНК. Дефект гена-супрессора ведет к размножению поврежденной клетки. Пролиферация поврежденной клетки – есть основа опухолевого роста.

Наследование генов-супрессоров. В каждой клетке есть по два аллеля любых генов. Значит, в каждой клетке есть 2 (два) гена-супрессора. Дефект одного гена-супрессора повышает риск пропуска в митоз поврежденной клетки. Дефект обоих генов-супрессоров всегда приводит к пропуску в митоз поврежденной клетки и опухолевому росту.

Пример: наследственная ретинобластома. Наследственная ретинобластома – опухоль сетчатой оболочки глаза. Диагностика – в раннем детском возрасте зрачок отсвечивает красным. Этиология – наследственный дефект гена-супрессора Rb → постоянный пропуск в митоз клеток с поврежденной ДНК.

РЕГУЛЯЦИЯ КЛЕТОЧНОГО ЦИКЛА

За регуляцию клеточного цикла отвечают 2 (две) группы веществ:

1.Cdk - циклинзависимые серин-треониновые протеинкиназы.

2.Циклины.

Для активной, рабочей регуляции клеточного цикла необходим комплекс «циклин + Cdk». Без связи в единый комплекс «циклин + Cdk», циклины и Cdk неактивны.

Существует 3 (три) основных класса циклинов и, следовательно, 3 (три) основных варианта комплекса «циклин + Cdk»:

1.G1 – циклины, для прохождения фазы G1 .

2.S – циклины, для прохождения S-фазы.

3.G2 – циклины, для прохождения фазы G2 и вхождения в митоз.

Циклины синтезируются в строго определенные моменты цикла и распадаются после выполнения своей функции. Например, циклины S синтезируются перед вступлением в фазу S и распадаются после прохождения этой фазы S.

Для нормальной регуляции клеточного цикла важно точное соблюдение времени синтеза и распада циклинов.

У трех основных вариантов комплекса «циклин + Cdk» есть подварианты. Принадлежность к тому, или другому подварианту зависит от разновидности Cdk (циклинзависимой протеинкиназы).