Алтайский государственный медицинский университет
Факультет «Сестринское дело»
Заочное отделение
КОНТРОЛЬНАЯ РАБОТА
по дисциплине: «Нормальная физиология»
Барнаул – 2009
Внешнее дыхание. Нервная регуляция внешнего дыхания
Газообмен происходит, как и в легких, так и в тканях [2, с. 176].
Внешнее дыхание осуществляется благодаря изменениям объема грудной клетки и сопутствующим изменениям объема легких.
Объем грудной клетки увеличивается во время вдоха, или инспирации, и уменьшается во время выдоха, или экспирации. Эти дыхательные движения обеспечивают легочную вентиляцию.
В дыхательных движениях участвуют три анатомо-функциональных образования:
1) дыхательные пути, которые по своим свойствам являются слегка растяжимыми, сжимаемыми и создают поток воздуха, особенно в центральной зоне;
2) эластичная и растяжимая легочная ткань;
3) грудная клетка, состоящая из пассивной костно-хрящевой основы, которая объединена соединительнотканными связками и дыхательными мышцами. Грудная клетка относительно ригидна на уровне ребер и подвижна на уровне диафрагмы.
Дыхательный центр, как и сердце, обладает автоматичностью, но его работа контролируется корой полушарий [1, с. 210].
Это легко доказывается тем, что человек может по собственному желанию замедлять или учащать дыхание. Кроме того, только с помощью коры можно изменить характер дыхательных движений при произнесении слов и пении.
Об этом же свидетельствуют специально поставленные опыты: если у животного удалить отделы центральной нервной системы, лежащие выше дыхательного центра, то дыхание сохраняется, но его регуляция нарушается. Дыхание такого животного не всегда соответствует потребностям организма.
При изменении условий, в которых находится организм, изменяется и дыхание [1, с. 211].
Физическая работа вызывает усиление обмена веществ в мышцах. В них увеличивается потребление кислорода и выделение углекислого газа. В ответ на это рефлекторно изменяется частота дыхания и его глубина. Во время интенсивной физический работы легочная вентиляция достигает 120 л/мин, а потребление кислорода 4000–5000 мл вместо 250 мл в покое [2, с. 176].
Рефлекторно изменяется дыхание и при купании в холодной воде.
У человека, бросившегося в холодную воду, «захватывает» дыхание, то есть происходит краткая остановка дыхания на вдохе в результате рефлекторного воздействия па дыхательный центр.
Изменение дыхания происходит у артистов балета и спортсменов еще до начала двигательной деятельности. Механизм этого явления тоже рефлекторен. Советскими учеными установлено, что на базе безусловных дыхательных рефлексов у человека и животных вырабатываются и условные дыхательные рефлексы [2, с. 177].
Все это говорит о том, что центральная нервная система через дыхательный центр управляет частотой и глубиной дыхания, приспосабливая его к потребностям организма.
На деятельность дыхательного центра оказывает влияние и изменение состава крови, главным образом концентрации углекислоты и кислорода в ней. В стенках кровеносных сосудов находятся рецепторы, которые возбуждаются при недостатке кислорода. Это приводит к возбуждению дыхательного центра. Излишек углекислого газа в крови, притекающей к дыхательному центру, тоже действует на него. Возбуждение дыхательного центра вызывает учащение дыхания и недостаток кислорода или избыток двуокиси углерода быстро ликвидируется. Их концентрация становится нормальной и частота дыхания снижается. Регуляция дыхания при изменении состава крови происходит гуморально, но под контролем нервной системы.
Таким образом, регуляция дыхания – точное и тонкое приспособление его частоты и глубины к изменениям внешней и внутренней среды – происходит нервным и гуморальным путями.
С дыханием связаны и защитные дыхательные рефлексы – кашель и чиханье. Кашель возникает при раздражении инородными частицами слизистой оболочки гортани, трахеи и бронхов, а чиханье – слизистой оболочки носовой полости. И в том, и в другом случае после сильного вдоха воздух с силой выдыхается и удаляет раздражающие частицы.
Структура и организация проводящей системы сердца, ее физиологическое значение. Природа автоматии сердца. Теории автоматии. Понятие об убывающем градиенте автоматии
Спонтанная генерация ритмических импульсов является результатом слаженной деятельности многих клеток синусно-предсердного узла, которая обеспечивается тесными контактами (нексусы) и электротоническим взаимодействием этих клеток. Возникнув в синусно-предсердном узле, возбуждение распространяется по проводящей системе на сократительный миокард [3, с. 283].
Сердце ритмически бьется (сокращается и расслабляется) в течение всей жизни человека [2, с. 167]. Даже удаленное из организма (изолированное) сердце продолжает некоторое время сокращаться. Следовательно, возбуждения, вызывающие сокращения сердечной мышцы, возникают в самом сердце. Это явление назвали автоматией сердца [2, с. 167].
В обычных условиях автоматия всех нижерасположенных участков проводящей системы подавляется более частыми импульсами, поступающими из синусно-предсердного узла. В случае поражения и выхода из строя этого узла водителем ритма может стать предсердно-желудочковый узел. Импульсы при этом будут возникать с частотой 40–50 в минуту [3, с. 283].
Если окажется выключенным и этот узел, водителем ритма могут стать волокна предсердно-желудочкового пучка (пучок Гиса). Частота сердечных сокращений в этом случае не превысит 30–40 в минуту. Если выйдут из строя и эти водители ритма, то процесс возбуждения спонтанно может возник нуть в клетках волокон Пуркинье.
Ритм сердца при этом будет очень редким – примерно 20 в минуту.
Особенностью проводящей системы сердца является способность каждой клетки самостоятельно генерировать возбуждение. Существует так называемый градиент автоматии, выражающийся в убывающей способности к автоматии различных участков проводящей системы по мере их удаления от синусно-предсердного узла, генерирующего импульса с частотой до 60–80 в минуту.
Отличительной особенностью проводящей системы сердца является наличие в ее клетках большого количества межклеточных контактов – нексусов. Эти контакты являются местом перехода возбуждения с одной клетки на другую. Такие же контакты имеются и между клетками проводящей системы и рабочего миокарда. Благодаря наличию контактов миокард, состоящий из отдельных клеток, работает как единой целое. Существование большого количества межклеточных контактов увеличивает надежность проведения возбуждения в миокарде.
Возникнув в синусно-предсердном узле, возбуждение распространяется по предсердиям, достигая предсердно-желудочкового (атриовентрикулярного) узла. В сердце теплокровных животных существуют специальные проводящие пути между синусно-предсердным и предсердно-желудочковым узлами, а также между правым и левым предсердиями. Скорость распространения возбуждения в этих про водящих путях ненамного превосходит скорость распространения возбуждения по рабочему миокарду. В предсердно-желудочковом узле благодаря небольшой толщине его мышечных волокон и особому способу их соединения возникает некоторая задержка проведения возбуждения. Вследствие задержки возбуждение доходит до предсердно-желудочкового пучка и сердечных проводящих миоцитов (волокна Пуркинье) лишь после того, как мускулатура предсердий успевает сократиться и перекачать кровь из предсердий в желудочки.
Следовательно, атриовентрикулярная задержка обеспечивает необходимую последовательность (координацию) сокращений предсердий и желудочков.
Скорость распространения возбуждения в предсердно-желудочковом пучке и в диффузно расположенных сердечных проводящих миоцитах достигает 4,5–5 м/с, что в 5 раз больше скорости распространения возбуждения по рабочему миокарду.
Благодаря этому клетки миокарда желудочков вовлекаются в сокращение почти одновременно, т. Е. синхронно Синхронность сокращения клеток повышает мощность миокарда и эффективность нагнетатель ной функции желудочков. Если бы возбуждение проводилось не через предсердно-желудочковый пучок, а по клеткам рабочего мио карда, т. Е. диффузно, то период асинхронного сокращения продолжался бы значительно дольше, клетки миокарда вовлекались в сокращение не одновременно, а постепенно и желудочки потеряли бы до 50% своей мощности.
Таким образом, наличие проводящей системы обеспечивает ряд важных физиологических особенностей сердца:
1) ритмическую генерацию импульсов (потенциалов действия);
2) необходимую последовательность (координацию) сокращений предсердий и желудочков;
3) синхронное вовлечение в процесс сокращения клеток миокарда желудочков (что увеличивает эффективность систолы).
Печень, роль в пищеварении. Желчеобразование. Состав желчи и ее роль в пищеварении. Желчевыделение
Анатомическое положение печени на пути крови, несущей питательные и иные вещества от пищеварительного тракта, особенности строения, кровоснабжения, лимфообращения, специфика функций гепатоцитов определяют функции этого органа [6, с. 212].
Ранее описана желчеотделительная функция печени, но она не единственная.
Важна также барьерная функция печени, состоящая в обезвреживании токсичных соединений, поступивших с пищей либо образовавшихся в кишечнике за счет деятельности его микрофлоры, лекарств, всосавшихся в кровь и принесенных кровью к печени.
Химические вещества обезвреживаются путем их ферментативного окисления, восстановления, метилирования, ацетилирования, гидролиза (первая фаза) и последующей конъюгации с рядом веществ (глюкуроновой, серной и уксусной кислотами,глицином, таурином – вторая фаза).
Не все вещества обезвреживаются в две фазы: некоторые – в одну или без изменений выводятся в составе желчи и мочи, особенно растворимые конъюгаты [6, с. 212].