Важку механічну травму і шок моделювали за допомогою модифікованого методу Кеннона (нанесення 50 ударів електромагнітним ударником по стегнах силою 250 Н/см2) (Ельский В. Н. и др., 2002). Вивчали тривалість життя, біохімічний статус, бактеріологічні показники, імунологічні показники і зв'язок між окремими біохімічними, імунологічними і мікробіологічними показниками при трьох типах розвитку посттравматичної реакції. Індивідуальну реактивність організму в динаміці ПТР визначали за допомогою модифікованого методу вимірювання шкірно-гальванічного рефлексу за допомогою показника “К”. Характер змін індивідуальної реактивності тварин, що визначався за вказаним способом, лежав в основі визначення типів посттравматичної реакції і мав важливе прогностичне значення.
Для оцінки об'єктивного статусу, ступеня розладів обмінних процесів в організмі експериментальних тварин при травмі, визначали ряд біохімічних параметрів. Їх спектр включав визначення в сироватці крові (на апараті Microlit) електролітів (натрію, калію, кальцію), загального білка та його фракцій, показників ліпідного обміну (холестерину, тригліцеридів, фракцій ліпопротеїдів), глюкози, СК, сечовини, креатиніну, а також активності ферментів: a-амілази, АсАТ та АлАТ, ЛФ-ази і КФ-ази, КФК, ЛДГ, ГГТ. Рівень маркера ендогенної інтоксикації МСМ визначали в сироватці крові скринінговим методом (Калашников В. С., 2002).
Посів крові на живильні середовища, виділення з неї мікроорганізмів і їх ідентифікацію проводили згідно вимогам, що пред'являються до бактеріологічних досліджень, які виконуються в клініко-діагностичних лабораторіях лікувально-профілактичних установ (Кочеровец В. И. и др., 1996). Кількісну оцінку складу мікробів і окремих структур грибів (уривки міцелія, макро- і мікроконідії, спори, конідіеносци і тому подібне), що виявляються в мазках крові, проводили шляхом прямого підрахунку згаданих об'єктів мікроскопії впродовж 4 см поверхні мазка. Число мікроскопічних об'єктів, що виявляються, виражали в% по відношенню до стандартного числа полів зору (100).
У периферичній крові у щурів підраховували загальну кількість лейкоцитів і визначали їх морфологічний склад (еозинофіли, базофіли, моноцити, нейтрофіли паличкоядерні, нейтрофіли сегменто-ядерні, лімфоцити) (Ярилин А. А., 1999).
Для оцінки виразності запальної відповіді організму вивчали в сироватці крові концентрацію прозапальних цитокінів: ІЛ-8, ІЛ-6 та ФНП-б. Вказані цитокіни виявляли методом твердофазного імуноферментного аналізу із застосуванням як індикаторний фермент пероксидази хрону.
Статистичну обробку отриманих результатів проводили на IBM PC/AT із застосуванням ліцензійних пакетів Statistica 5.5 (Stat Soft Rus) та Stadia 6.1 (“Информатика и компьютеры”, Москва) (Кулаичев А. П., 1999; Лапач С. Н., 2000).
Результати власних досліджень та їх обговорення. Встановлено, що після нанесення важкої стандартної травми, розвиваються три типи посттравматичної реакції, названі С. Є. Золотухіним (Золотухин С. Е., 1998): “шоковим смертельним” (з тривалістю життя 18,2±2,5 години), “шоковим несмертельним” (з тривалістю життя 61,3±4,8 години) та “нешоковим” (з тривалістю життя 100,1±7,5 години). Відповідно, їх частота реєстрації знаходилася в співвідношенні (%): 38:31:31.
Для виявлення особливостей порушення метаболізму при важкій механічній травмі, що протікає у тварин з різними типами посттравматичної реакції, були визначені біохімічні показники крові у 40 експериментальних тварин. 10 щурів були в групі контролю (інтактні).
Особливості зміни показників, що характеризують електролітний, вуглеводний і білковий обмін у контрольних і тварин з I-III типами посттравматичної реакції містяться в таблиці 1.
У тварин з травмою показники калія, кальцію, сечовини і МСМ у сироватці крові змінювалися більшою мірою, чим показники натрію, креатиніну, СК, загального білка і його фракцій. Найбільших значень при шоковому смертельному типі досягали показники МСМ і сечовини. Вони, відповідно, на 129% і 108% перевищували рівень контролю. Найменших значень при шоковому смертельному типі посттравматичної реакції досягали показники кальцію. Вони знижувалися на 52% в порівнянні з даними контролю.
У тварин з травмою показники КФК, ЛДГ, АсАТ, АлАТ змінювалися сильніше, ніж б-амілаза, ГГТ, ЛФ- і КФ-аз. Ці показники мали менші відхилення від показників норми при не шоковому типі і великі – при шоковому смертельному. Зокрема, при шоковому смертельному типі посттравматичної реакції активність АсАТ, АлАТ, КФК і ЛДГ перевищувала рівень контролю більш, ніж в 6 разів.
Таблиця 1. Біохімічні показники сироватки крові, що характеризують електролітний, вуглеводний і білковий обмін у контрольних і тварин з I-III типами посттравматичної реакції (M±m)
Біохімічні показники, од | Контроль (n=10) | Типи посттравматичної реакції | ||
нешоковий (III) (n=10) | шоковий несмертельний (II) (n=10) | шоковий смертельний (I) (n=10) | ||
К+, ммоль/л | 4,1±0,15 | 4,95±0,181) | 5,33±0,151) | 5,97±0,251,2,3) |
Na+, ммоль/л | 147,0±8,7 | 141,4±9,5 | 150,3±10,3 | 160,2±10,72) |
Ca++, ммоль/л | 2,55±0,21 | 1,63±0,101) | 1,34±0,121) | 1,22±0,091,2) |
Креатинін, мкмоль/л | 89,4±5,1 | 112,7±7,11) | 129,3±10,71) | 155,4±4,31,2,3) |
Сечовина, ммоль/л | 7,5±0,49 | 8,6±0,59 | 10,7±1,21) | 15,6±1,11,2,3) |
МК, мкмоль/л | 210,0±14,1 | 295,0±17,71) | 351,5±17,61) | 372,3±18,21,2) |
Глюкоза, ммоль/л | 4,77±0,35 | 6,9±0,321) | 6,7±0,221) | 4,5±0,221,2,3) |
Загальний| білок, г/л | 65,2±2,3 | 60,0±4,2 | 60,2±4,2 | 52,3±2,71) |
Альбуміни,% | 51,8±0,75 | 48,7±1,6 | 48,7±3,1 | 45,2±2,41) |
Глобуліни,% | 48,2±1,1 | 50,8±2,3 | 51,4±2,2 | 54,7±2,4 |
б1-глобуліни,% | 5,01±0,43 | 5,41±0,28 | 6,11±0,551) | 6,6±0,521) |
б2-глобуліни,% | 13,7±1,1 | 10,7±0,59 | 9,9±0,41) | 7,5±0,431,2,3) |
в-глобуліни,% | 16,4±1,2 | 12,1±0,28 | 14,2±0,71 | 13,1±1,01) |
г-глобуліни,% | 20,4±1,5 | 24,1±0,47 | 23,5±1,3 | 25,5±1,41) |
МСМ 254 нм, Е/мл | 0,232±0,022 | 0,351±0,0421) | 0,363±0,032 | 0,531±0,0411,2,3) |
Примітки:
1. 1 – відмінності статистично достовірні в порівнянні з контрольною групою (p<0,05);
2. 2 – відмінності статистично достовірні в порівнянні з не шоковим типом посттравматичної реакції (p<0,05);
3. 3 – відмінності статистично достовірні в порівнянні з шоковим несмертельним типом посттравматичної реакції (p<0,05).
У тварин з травмою показники загального білірубіну, ДК, тригліцеридів змінювалися сильніше, ніж МДА, холестерину і фракцій ліпопротеїдів. Ці показники мали менші відхилення від показників контролю при не шоковому типі і великі – при шоковому смертельному типі посттравматичної реакції. При шоковому смертельному типі найбільш високих значень досягали показники білірубіну і ДК, що перевищували відповідно на 182% і 119% значення контролю.
Для виявлення ролі гіперметаболізму в патогенезі і для розробки прогностичних критеріїв тяжкості перебігу посттравматичної реакції у тварин в експерименті, нами були відібрані зі всіх вивчених біохімічних показників 11. Ці показники з різних сторін характеризували гіперметаболізм. Ось ці показники: “креатинін”, “сечовина”, “СК”, “глюкоза”, “загальний|спільний| білок”, “МСМ”, “холестерин”, “тригліцеріди|”, “МДА”, “ДК”, “білірубін”.
Для приведення значень цих показників до єдиної шкали змін щодо рівня контролю (показників інтактних тварин) нами обрані величини відносних коефіцієнтів “Кi”, які визначали за формулою:
де:
З урахуванням того, що величини відносних показників “Кi” відображали ступінь виразності гіперметаболізму, показник “Кi” був названий нами “гіперметаболічним показником”.
Значення показників гіперметаболзму при трьох типах перебігу посттравматичної реації зазначені в таблиці 2. Найбільшими гіперметаболічними показниками були показники білірубіну, МСМ, ДК, сечовини, найменшими – глюкози, МДА, загального білка. При шоковому смертельному типі посттравматичної реакції високий рівень білірубіну, МСМ, ДК і сечовини свідчив про те, що на цьому етапі дослідження, коли були визначені ці однойменні біохімічні показники у тварин, в патогенезі посттравматичної реакції відбувалися зміни, які можна було описати за допомогою концепції “лімітуючих ланок” (Селезнев С. А., 1984). Зростання білірубіну в сироватці крові відображало порушення проникності клітинних мембран гепатоцитов і накопичення в печінці продуктів руйнування міоглобіну, що поступали із зруйнованих м'язових тканин. Високий рівень ДК і сечовини вказував на посилення процесів перекисного окислення ліпідів і розпаду білків. Саме ці порушення обміну домінували на даному етапі патогенезу і складали лімітуючі ланки.
Таблиця 2. Значення показників гіперметаболізму (“Кi”) у тварин трьох типів перебігу посттравматичної реакції,%
Показники | Типи ПТР | ||
не шоковий | шоковий не смертельний | шоковий смертельний | |
Креатинін | 26,06 | 44,63 | 73,8 |
Сечовина | 14,68 | 42,67 | 108,0 |
МК | 40,47 | 67,38 | 77,29 |
Глюкоза | 44,65 | 40,46 | 5,66 |
Загальний білок | 7,98 | 7,67 | 19,97 |
МСМ | 51,29 | 56,47 | 128,89 |
Холестерин | 30,0 | 3,45 | 36,2 |
Тригліцеріди | 0 | 9,02 | 54,89 |
МДА | 2,94 | 8,82 | 14,70 |
ДК | 36,98 | 91,78 | 119,18 |
Білірубін | 28,89 | 133,33 | 182,22 |
При гіперметаболізмі основним джерелом енергії стають амінокислоти і жирні кислоти. Вони утворюються в результаті цитолізу клітин покривних тканин, опорно-рухового апарату і внутрішніх органів, в першу чергу, органів шлунково-кишкового тракту, печінки, нирок, легенів і серця. Цитоз в наших дослідженнях підтверджувався гіперкаліємією і гіперферментемією. Зокрема, розпад м'язової тканини підтверджувався високою активністю КФК і КФ. Висока активність КФ-ази також говорила про руйнування еритроцитів і тромбоцитів. Гипертрансаміназемія і ГГТ свідчили про цитоліз кардиоцитов і гепатоцитов. Про руйнування епітеліальної тканини говорили зміни активності в-амилаз і ЛДГ. При шоковому смертельному типі посттравматичної реакції, на відміну від шокового несмертельного і нешокового типів, ефективність глюконеогенезу знижувалася, що приводило до ранньої летальності. На зниження ефективності глюконеогенезу при такому типі посттравматичної реакції вказувала низька величина глюкози і високі значення гіперметаболічних показників загального білка і тригліцеридів.