Белов А. Д. (1990) сообщает о том, что правильно наложенная и хорошо отмоделированная бесподкладочная гипсовая повязка прочно фиксирует отломки костей, плотно прилегает к коже, вызывая равномерное давление на всю поверхность конечности и создает наиболее благоприятные условия для обеспечения покоя. Иммобилизирующую повязку можно снимать у мелких животных на 20-25 день при появлении признаков восстановления опорной функции поврежденной конечности.
Функциональная терапия заключается в проведении пассивных и активных движений конечности, массажа тканей и применение на участок поражения тепловых физиотерапевтических процедур. Активные движения конечности предупреждают атрофию мышц, улучшают крово - и лимфообращение, ускоряют образование костной мозоли.
После снятия гипсовой повязки применяют парафинолечение, грязелечение, светолечение и электролечение, механотерапию. Эти методы назначают для рассасывания отеков и пршшфератов, улучшения движения в суставах и уменьшения болей. Для ускорения образования костной мозоли создают условия, улучшающие местное и общее кровообращение, нормализующие общий и витаминный обмен, устраняющие боли и повышающие общие защитные силы организма. С этой целью больному животному назначают ионофорез кальция и фосфора, дают витаминизированный рыбий жир, в рацион включают корма богатые белками, витаминами и солями кальция (Кузнецов А. К., 1986).
Кроме консервативного лечения в литературных источниках приводятся способы оперативного лечения переломов. Оно необходимо при невозможности вправления отломков, интерплазии мягких тканей между ними, наклонности к быстрому смещению реионированных отломков, при неправильно сросшихся переломах.
Усовершенствование методов лечения переломов костей позволило установить, что наиболее благоприятные результаты дает оперативный метод, поскольку при нем возможноточное сопоставление и, главное, удержание отломков в правильном положении до их полной консолидации (Бедов А. Д, 1990). Однако клиницисты неоднократно подчеркивали, что оперативное лечение и консервативное - это не конкурирующие, а взаимодополняющие друг друга методы. Обоснованное их применение, по строгим показаниям, с достаточным умением и оснащением - залог успешной консолидации переломов костей.
Надежное сопоставление и прочная фиксация отломков способствует более полноценной регенерации кости, регенерация кости при этом в своем развитии не проходит те дополнительные фазы, которые характерны для развития регенерата при подвижных, не сопоставленных отломках костей (Белоус А. М, 1972).
Основным условием для любого остеосинтеза является ассептическое и атравматическая оперативная техника. Технически возможны следующие методы остеосинтеза: остеосинтез винтом, пластинами, вытяжение ремнем, стабилизация с помощью аппарата внешней фиксации, остеосинтез гвоздем, - причем каждая техника имеет свои показания в соответствии с типом перелома и его локализацией. На сегодняшний день наилучшие результаты с быстрым функциональным восстановлением дают остеосинтез винтом, пластинами и вытяжение ремнем.
Ассептика ни в коем случае не можег быть заменена обработкой антибиотиками.
При компрессионном остеосинтезе при помощи винта, компрессионной пластины и путем вытяжения проволокой фрагменты, благодаря эластичности металлического имплантата сдавливаются так, что между ними не возникает никаких движений. В этом случае остионы могут заполнять щели перелома сразу же, и костная мозоль практически не видна (см. рис. 7)
Остеосинтез винтом является техникой выбора при длинных косых и многофрагментивных диафизарных переломах, а также при переломах эпифизов (см. рис. 8).
Статическая компрессия фрагментов с помощью винта. При вворачивании винта его головка прижимает оба фрагмента друг к другу и сужает щель.
Компрессионная пластина применяется для стабилизации поперечных и коротких косых диафизарных переломов. Пластаны с отверстиями специальной формы (динамические компрессионные пластины) при заворачивании винтов стягиваются фрагменты кости и прижимают их друг к другу, обеспечивая, таким образом, первичное заживлениеперелома (см, рис. 9)
Статическая компрессия фрагментов с помощью компрессионной пластины. Осевое сжимание фрагментов достигается за счет эластичности металлического имтантата. Повышенное трение между фрагментами препятствуем микродвижениям в щели.
Вытяжение проволокой применяется только при отрывных переломах отростков костей (локтевой отросток, пяточная кость). При этом растягивающие силы прикрепленной на отростке мышцы или связки с помощью проволоки превращаются в силы сжатия, прижимающие фрагменты друг к другу (см. рис. 10)
Динамическая компрессия фрагментов путем вытяжения проволокой. При этом тяговое усилие мышцы или связки превращается в сдавливающее, с помощью которого щель перелома сжимается.
Шинирование - наложение шины на кость, основные фрагменты,
дистальный и каудальный, соединяются друг с другом с помощью имплантата, по которому через область перелома проводятся силы, возникающие при движении нагрузки на конечность (см. рис. 11).
Шинирование с помощью опорной пластины многофрагментного перелома, фрагменты которого слишком малы для остеосштеза винта. По пластине действующие на кость силы передаются с дистального на проксимальный фрагмент, минуя область перелома. Возможные щели и костные дефекты заполняются аутологичным трансплантатом губчатой ткани.
Достигаемая таким образом стабильность зависит от жесткости имплантата и надежностью его закрепления в кости. С точки зрения стабильности шинирование уступает компрессионному остеосинтезу. Оно применяется в случаях, когда проведение компрессионного остеосинтеза не представляется возможным, например, при лечении многофрагментных переломов (Ханс Г. Химанд, 1998).
Таким образом, прочный остеосинтез позволяет сократить общие сроки консолидации переломов.
Диафизарные переломы бедренной кости вследствие анатомических причин достаточно редко удается иммобилюировать консервативно. Кроме того, они зачастую осложняются разрывами и дистрофией четырехглавой мышцы (см. рис. 12)
Заживление переломов
Восстановление кости при переломе происходит посредством образования костной мозоли -Callus, Основным источником регенерации кости служат остеогенные элементы, находящиеся в комбиалыюм слое надкостницы, костном мозге, гаверсовых кналах и по окружности внуткостных сосудов. За счет размножения этих клеточных элементов образуется остеоидная ткань, превращающаяся впоеледствие в молодую костную ткань. Костные клетки не обладают способностью к размножению, и поэтому, никакого участия в регенерации кости они ее принимают. Процесс заживления проходит следующие фазы:
I. Подготовительная.
Характеризуется свертыванием лимфы и крови, излившейся в ткани, развтием био -, физико-, коллоидо-химических изменений и воспалительной реакцией, возникающей в результате травмы и нарушенного кровообращения в области перелома. Образующийся кровяной сгусток окутывает в виде муфты концы отломков, а сыворотка, выделяющаяся из сгустка, а также серозный воспалительный экссудат диффундируют в мягкие ткани. Происходит эмиграция вазошнных клеток, размножение фибробластов, остеобластов и клеток физиологической системы соединительной ткани и образование новых капилляров. Под влиянием остеокластов и их фермента кислой фосфатазы, а так же местного ацидоза (рН 5 - 5,4) происходитдеминерализация концов отломков по линии излома. Таким образом, зона переломаподготавливается к регенерации, которая начинается уже через 48-72 часа.
П. Образование первичной соединигелъно-таанной мозоли.
По мере стихания воспалительных явлений, рассасывания погибших клеток крови и клеток ткани в кровяной сгусток проникают остеогенные клетки комбиального слоя надкостницы,костного мозга и эндоста. Постепенно размножаясь, клетке прорастают весь кровяной сгусток, содержащий густую сеть вновь образованных капилляров. В результате вокруг отломков развивается своеобразная грануляционная ткань, которая представляет собой соединительнотканную мозоль. Клеточные элементы ее превращаются путем дифференциации в остеобласты и костнуе клетки, а межуточное вещество и коллагеновые волокна - в основную субстанцию. В эту фазу, по данным гистохимических и радиоизотопных исследований Белова А. Д., Мустакимова Р. Г., Лукьяновского В. А., (1981) в костеобразующих элементах (в клетках камбиального слоя надкостницы, эндоста, стенках гаверсовых каналов и внутрикостаых сосудов, в костных полостях и канальцах) поврежденной кости и тканях формирующейся мозоли редко вырастает интенсивность белкового и фосфорно-кальвиевого обменов, активность ферментов - трансалиназ и щелочной фосфатазы, участвующих в биосинтезе белков и минерализации костной мозоли. Количество мукополисахаридов и микроэлементов достигает максимума.
Продолжительность образования соединительно-тканной мозоли различна. Большое количество воспалительного экссудата, наличие мягкой ткани между концами отломков, инфекция, пониженна! способность остеогеиных клеток к размножению удлиняют сроки развития остеогенной ткани и, следовательно, продолжительность второй фазы; наоборот, хорошее кровоснабжение, соприкасание отломков, биологическая активность клеточных элементов и отсутствие инфекции способствует росту остеогенной ткани, и сокращают сроки второй фазы заживления перелома. Наряду с размножением остеогеных клеток образуются в соединительно-тканной мозоли островки хондроидной ткани. Они возникают в результате метаплазии клеток молодой соединительной ткани. Развитие хондроидной ткани обратно пропорционально прочности мобилизации перелома. Таким образом, следует признать, что образование хондроидной ткани с последующим развитием хрящевых клеток является признаком извращенного процесса заживления перелома. Известно, что формирование остеоцитов происходит от недифференцированной мезеюшмной клетки через фазу развития остеобластов (первичный путь) или фазу развития хондрацитов или фибробластов.