Такі системи подають лікарськуречовину в кровообіг й у цьому аналогічні таблеткам, ін'єкціям або мазям. Однак на відміну від них лікарська речовина подається зпевною швидкістю протягом декількох діб. Мембрани для таких систем виготовляють із ефірів целюлози, поліпропілену й т.д. Їхню проникність регулюють технологічними прийомами, наприклад, зміною пористості або коефіцієнта скрученості пор.
На стадії експериментальної перевірки зараз перебувають системи, принцип дії яких у максимальному ступені відповідає фізіологічному. Добре відомо, що надходження будь-якої фізіологічно активної речовини в кровоток контролюється регуляторними системами організму. Кожна речовина з'являється в той момент й у тім місці, коли й де вона потрібна. На аналогічномупринципі зворотного зв'язку побудована, наприклад, система для виділення інсуліну. Ця система створена із проникної для води, інсуліну й глюкози полімерної мембрани. У цю мікрокапсулу поміщають комплекс інсуліну з високомолекулярним білком, що у силу своїх великих розмірів не здатний проникати через мембрану. Білок підбирають таким чином, щоб міцність його зв'язкуз інсуліном була невелика й комплекс міг дисоціювати під дією глюкози. Тоді з появою в зовнішньомусередовищі надлишку глюкози остання проникає усередину капсули й витісняє білок з його комплексу з інсуліном. У системі з'являється вільний інсулін, кількість якого точно еквівалентна кількості глюкози, що проникла через мембрану. Таким чином, програма подачі інсуліну в кожен момент часу визначається самим організмом, тобто рівнем глюкози в крові.
Розділ 4. Створення штучних органів і тканин
У наш час все більше людей потребують протезування різноманітних органів. У якості протезів використовують органи донорів, але враховуючи зростаючі потребі в протезування донорських органів не вистачає. Тому розроблені штучні органи. Слід пояснити, що під штучними органами розуміють як певні замінники органів із полімерних композицій (суглоби, кістки, клапани серця), так і вирощені методами біотехнології замінники шкіри, хрящів, які складаються із живих клітин. Але створити складні органи – легені, серце, печінку такими методами на наш час неможливо.
Серед штучних органів одними із найпоширеніших є клапани серця. У США в період з 1961 по 1981 р. було проведено 2135 операцій по заміні клапанів серця, при цьому 12 % хворих піддавалися подвійному протезуванню. Основними елементами клапана серця єполісилоксановакулька й політетрафторетиленове покриття опорного кільця. Хоча у наш час конструкцію клапана серця намагаються покращити.
Перший і самий головний їхній недолік – не надто хороша гемосумісність. Звичайно вона проявляється не в тім, що клапани забиваються тромбами – в умовах інтенсивногокровотоку, найчастіше турбулентного характеру, тромби, якщо вони й утворюються на поверхні клапана, змиваються кров'ю, що протікає, і надалі руйнуються ферментами крові. Кремнійорганічні полімери можуть сорбувати із крові різні речовини, що може приводити до руйнування деталей штучного клапана при тривалій експлуатації. Останнє й обумовило розробку нових полімерних матеріалів для створення деталей клапана. Зараз уже створені, випробувані й застосовуються клапани на основі стеклоподібного вуглецю, одержаного термічною обробкою деяких органічних речовин.
Другий недолік штучного клапана пов'язаний з його конструкцією. Якщо це полісилоксановакулька, то вона розташована на опорномукільці, звичайно покритомуполітетрафторетиленом. Потік крові віджимає кульку від кільця, відкривається отвір, через який кров із серця спрямовується в аорту. Зворотне потік крові після серцевого скорочення неможливий, оскільки він притискає кульку до опорного кільця, і потік крові припиняється. Природний же аортальний клапан влаштований зовсім по-іншому. У штучному клапані при віджатій кульці кров обтікає її, а не рухається навпростець, як у природному клапані. Частина енергії серця (звичайно не зовсім здорового) витрачається на подолання цього непотрібного лобового опору. До того ж при обтіканні кульки виникають завихрення в потоці крові, а це не тільки збільшує додаткове навантаження на серце, але й несприятливо позначається на самій крові. Будь-яке порушення ламінарності потоку крові може викликати руйнування структурних елементів крові, ініціювати процес тромбоутворення.
Конструкції, що моделюють пристрій природного клапана, зараз уже створені. Проблема тільки в матеріалах. Пелюстки клапана повинні витримувати, і в природному клапані витримують, тривалі знакоперемінні навантаження до сотні тисяч на добу. Аналогічних синтетичних матеріалів поки ще немає, але вважається, що це будуть складнівисокоеластичні композиції, армовані посилюючими високоміцними полімерними волокнами із заздалегідь заданим розподілом цих волокон в обсязі полімеру.
Однієї з найпоширеніших областей застосування кремнійорганічних полімерів є мембранна технологія. Мембрана являє собою полімерний виріб будь-якої форми (плоска плівка, порожнє волокно, багатошарова конструкція, набрякла частка й т.п.), що здійснює функції поділу складної суміші шляхом затримки якого-небудь компонента або селективного його пропускання через себе. Своєю появою апарати «Штучналегеня» й «Штучне серце - штучналегеня» зобов'язані хірургії органів грудної порожнини, коли при оперативному втручанні необхідно перекрити потік крові й припинити її доступ в оперований орган, здійснюючи одночасно нормальне постачання організму кров'ю й газообмін у крові. Основними компонентами таких апаратів є система пульсуючих насосів, що забезпечують динамікукровотоку, і оксигенатор – пристрій для насичення крові киснем і виведення з неї вуглекислого газу. Існують різноманітні конструкції мембраннихоксигенаторов, у яких полімерні мембрани можуть бути плоскими, складеними в рулони, згорнутими в спіраль, у вигляді порожнього волокна або тонкої рідкої плівки.
Як полімерний матеріал для виготовлення мембран зараз в основномувикористовуютьполідиметилсилоксан, що володієнайвищою серед відомих матеріалів проникністю по кисню й вуглекислому газу. Так, проникність цього полімеру по кисню майже в 100 000 разів вище, ніж полівінілхлориду, і майже в 500 разів вище, ніж поліетилену, а по вуглекислому газу в 60 000 й 1500 разів відповідно. На жаль, уполідиметилсилоксановихкаучуків дуже низькі міцнісні характеристики, і тому головний напрямок робіт у цій областіполягає в зміцненні матеріалу, наприклад, введенням у його складполікарбонатних й інших твердих фрагментів.
Близький принцип поділу складних сумішей лежить й в основі апаратів «Штучна нирка». Відомо, що основні функції нирок полягають у регулюванні електролітного балансу, кислотно-основної рівноваги й осмотическоготиску крові, а також у виведенні продуктів метаболізму й інших речовин, наприклад, лікарських препаратів. Саме ці функції й можуть бути передані штучному органу. Гемодіаліз – процес позаниркового очищення крові – протікає в гемодіалізаторах, основною робочою частиною яких є напівпроникна мембрана. У світовій практиці найбільше поширенняодержалигемодіализатори пластинчастого й капілярного типу.
Уперше ідею гемодіалізу в роки другої світової війни втілив у життя голландський лікар В. Кольф, що у такий спосіб очистив кров хворого при важкому пораненні з інтоксикацією сечовиною. Кров хворого він пропускав через целофанову трубку, а саму трубку поміщав у розчин для діалізу. Із цього часу й до наших днів похідні целюлози залишаються основним матеріалом для створення таких плівок. Видалення токсинів із крові за допомогою таких мембран здійснюється по «ситовому механізмі» - чим вище молекулярна маса токсину, тим нижче швидкість його проникнення через мембрани.
І все-таки діаліз не завжди задовольняє медиків: апарати досить громіздкі, швидкість виведення токсинів менше, ніж хотілося б, а сполукиз великою молекулярною масою взагалі не видаляються або видаляються дуже погано. Тому великий інтерес і медиків й інших фахівців викликавзапропонований в 60-х роках принципово новий спосіб витягу шкідливих речовин з біологічних середовищ. Мова йде про процес гемосорбції – видалення із крові токсинів шляхом пропущення крові через шар із сорбентом. Використання іммобілізованих фізіологічно активних речовин виявилосяперспективним і для виконання іншихдетоксикаційних функцій нирок. Наприклад, ту ж сечовину, що традиційно видаляютьгемодіалізом, можна успішно виводити із крові в так званій штучній клітині (мал. 1). Штучна клітина складається з оболонки-мембрани, проникної для низькомолекулярних речовин і непроникної для речовин полімерного характеру. Усередині перебуває водяний розчин ферменту – уреази, здатноїкаталізувати руйнування сечовини, і іонообмінна смола, сорбуюча іон амонію. Уперше така штучна клітина була створена відомим біохіміком Т. Чангом. Зараз не тільки створені більшескладні за будовою штучні клітини, але й у значній мірі просунулися роботи в області іммобілізації самих клітин. Уже синтезовані матеріали, у яких живі клітини нормально існують, розмножуються й виконують свої функції.