Под влиянием рентгеновых лучей в дозе 25 Р. отмечалось стимулирующее влияние не только на рост и развитие цыплят после облучения их в первые сутки жизни, но и на более раннее их созревание. Курочки опытной группы начинали яйцекладку в среднем на 7 дней раньше птиц контрольной группы; у них была несколько выше средняя масса тела. А. М. Кузин и др. (1963) при облучении яиц в предынкубационный период дозой 1,4 Р отмечали увеличение процента вывода цыплят за счет снижения количества погибших эмбрионов. Эти цыплята были более жизнеспособные по сравнению с контрольными. Молодки опытной группы начинали нестись на 10 дней раньше.
Однократное облучение дозами 4—200 рад неполовозрелых кур в возрасте 112 дней приводило к увеличению яйценоскости на 119% по сравнению с контролем. ) выявлено, что предынкубационное облучение яиц гамма-лучами в дозе 100±15 Р или цыплят в день вывода дозой 40±5 Р вызывает ряд положительных изменений в общем состоянии бройлеров в период их выращивания — они более активно проявляют групповые и индивидуальные рефлексы, лучше, чем контрольные, поедают корм.
Гамма-облучение суточных поросят крупной белой породы дозами 10—25 Р вызывало у них выраженный стимулирующий эффект. В первые 3 мес. жизни масса тела у животных увеличивалась на 10—15%, к 6-месячному возрасту масса тела и средняя длина туловища превышали на 6—8% массу контрольных сверстников. Радиостимуляция не оказывала отрицательного влияния на органолептические и биохимические показатели мяса. Имеются данные, что лучевое воздействие дозами 10—30 Р повышает выживаемость и интенсивность роста норок, улучшает качество пушнины. При этом отмечено, что у самцов эффект выражен сильнее.
Радиационная (холодная) стерилизацияматериалов и препаратов медицинского и ветеринарного назначения, не выдерживающих термической или химической обработки или теряющих при этом свои функциональные свойства, имеет большое значение. Широкое использование сульфаниламидов и антибиотиков в медицине и ветеринарии обусловливает особый интерес к стерильности этих препаратов и способам стерилизации их. Сульфаниламиды, обладая высокой радиорезистентностью, без особых трудностей подвергаются радиационной стерилизации. При дозе 2,5 Мрад и выше не возникает никаких изменений у этих лекарственных веществ; незначительные физико-химические изменения были отмечены лишь при облучении дозой 25 Мрад. Антибиотики, простерилизованные радиационным способом в сухом виде, по терапевтической эффективности, биологическим и основным физико-химическим показателям отвечают требованиям, предусмотренным для необлученных препаратов.
Испытывалась возможность стерилизации радиационным способом гормонов, ферментов, витаминов. Оказалось, что гормоны обладают более высокой радиорезистентностью по сравнению с витаминами. Облучение гормонов (кортизон, преднизолон, прогестерон, АКТГ и др.) в дозах, значительно превышающих стерилизующие дозы (6—8 Мрад), не вызывало изменений их химических и биологических свойств. Из ферментов наиболее радиорезистентными были протеолитические (трипсин, пепсин, инвертаза и др.). Высокой радиочувствительностью обладают витамины группы В, особенно если их облучают в растворах. Дозы облучения от 0,5 до 2,5 Мрад изменяют цвет препарата и снижают его биологическую активность. Однако облучение таблеток поливитаминных препаратов, содержащих фолиевую и никотиновую кислоты, тиамин, рибофлавин, пантотенат кальция дозами в пределах 2 Мрад, не изменяло свойств препарата и не снижало его активности в течение 4 лет в условиях хранения при комнатной температуре.
Изучается возможность радиационной стерилизации крови и препаратов, изготовленных из нее. Получены обнадеживающие результаты, которые позволяют применить ионизирующие излучения для стерилизации крови и белковых растворов.
Несмотря на относительно высокую радиорезистентность микроорганизмов, оказалось возможным использовать ионизирующие излучения для получения принципиально новых препаратов — радиовакцин и радиоантигенов, а также для лучевой стерилизации уже готовых вакцин, бактериальных антигенов и питательных сред.
Накоплен большой опыт по инактивации многих известных вирусов и имеются данные о дозах облучения, убивающих их. Установлена возможность использования радиации для стерилизации вакцин и приготовления анатоксинов.
Перспективными оказались попытки использования живых радиовакцин при гельминтозах — иммунизация телят и ягнят против нематод путем заражения животных личинками, ослабленными рентгено- или гамма- облучением. Проводят работы по созданию радиовакцин против протозойных заболеваний сельскохозяйственных животных.
Есть данные, указывающие на то, что радиационная стерилизация питательных сред не только не понижает питательных свойств, но даже в той или иной степени повышает их качество для некоторых видов микроорганизмов.
Исследования последних лет показали экономическую целесообразность применения ионизирующих излучений для обеззараживания сырья животного происхождения — шерсти, пушно-мехового, кожевенного и другого сырья, неблагополучного по инфекционным болезням.
Разработаны режимы радиационного обеззараживания сырья при сибирской язве, листериозе, трихофитии и микроспории, чуме плотоядных, ящуре. Определены параметры гамма-установки для радиационного обеззараживания шерсти, кожевенного и пушно-мехового сырья, волос, пуха и пера.
Всемирная организация здравоохранения (ВОЗ) и Комиссия ООН по вопросам пищи и сельского хозяйства одобрили использование ионизирующего излучения для обработки пищевых продуктов с целью стерилизации и лучевого консервирования, а также обеззараживания мясных туш при паразитарных поражениях (трихинеллезе и др.).
Проведенные исследования лучевой стерилизации пищевых продуктов и по продлению сроков их хранения показывают, что этот прием будет применяться, хотя он и сопровождается некоторыми биохимическими изменениями продуктов, частичной потерей витаминов и изменениями органолептических свойств. В настоящее время ионизирующие излучения рекомендуют применять при хранении мяса, полуфабрикатов и кулинарных изделий из них, рыбы и других продуктов моря, пищевого картофеля, лука и прочих корнеплодов в весенне-летние месяцы, скоропортящихся ягод и фруктов на сроки их транспортировки от производителя к потребителю, концентратов фруктовых соков и т. д.
Радиационная технология обработки и хранения продуктов основана на подавлении микробиальной обсемененности (радуризация) или радиационной стерилизации (радаппертизация). Одной из сложных и недостаточно решенных проблем на животноводческих комплексах является обеззараживание навоза и навозных стоков. Проведенные исследования подтвердили перспективность метода обеззараживания их с помощью гамма-излучения и ускоренных электронов.
Наиболее эффективным и экономически выгодным оказалось комбинированное воздействие ионизирующего излучения и физических (тепло, давление) или химических факторов, так как при этом удается значительно снизить обеззараживающую дозу для яиц гельминтов и микроорганизмов. Разработана технология обеззараживания навозных стоков на основе использования ионизирующего излучения (гамма-излучения или электронов), давления и температуры.
Известно, что борьба с вредителями сельскохозяйственных растений и собранного урожая — дело исключительной важности, поскольку дает возможность сохранить очень большое количество продукции (около 20% валового сбора). Для борьбы с насекомыми-вредителями предложено использовать ионизирующее излучение в трех основных направлениях:
а) радиационной половой стерилизации самцов насекомых, специально отловленных или разведенных и затем выпущенных в естественные условия, где данный вид насекомых распространен; стерильные самцы спариваются с самками, те откладывают стерильные(неоплодотворенные) яйца; личинки из таких кладок не выводятся, что приводит к уничтожению популяции;
б) радиационной селекции болезнетворных для насекомых-вредителей микроорганизмов, грибов и др.; на полях, обработанных такими препаратами, многие насекомые-вредители заболевали и гибли;
в) радиационной дезинсекции, т. е. уничтожения насекомых-вредителей сельскохозяйственной продукции облучением. Для этих целей создана передвижная гамма-установка «Дезинсектор», а в условиях элеваторов функционируют промышленные стационарные устройства.
Вопрос 11. Источники радиоактивного загрязнения внешней среды.
Все живые существа на земле постоянно подвергаются воздействию ионизирующей радиации путем внешнего и внутреннего облучения за счет естественных (космическое излучение и природные радиоактивные вещества) и искусственных (отходы атомной промышленности, радиоактивные изотопы, используемые в биологии, медицине и сельском хозяйстве, и др.) источников ионизирующих излучений.
Естественные источники ионизирующих излучений.
Космическое излучение – это ионизирующее излучение, непрерывно падающее на поверхность земли из мирового пространства (первичное космическое излучение) и образующееся в земной атмосфере в результате взаимодействия первичного космического излучения с атомами воздуха (вторичное космическое излучение).
Первичный компонент космических лучей образуется вследствие извержения и испарения материи с поверхности звезд и туманностей космического пространства. Он состоит в основном из ядер легких атомов: водорода — протонов (79%), гелия — α-частиц (20%), лития, берилия, бора, углерода, азота, кислорода и других элементов, большинство из которых обладают очень высокой энергией. Такие большие энергии первичные космические частицы приобретают за счет ускорения их в переменных электромагнитных полях звезд, многократного ускорения в магнитных полях облаков космической пыли межзвездного пространства и в расширяющихся оболочках новых и сверхновых звезд. Однако лишь немногие частицы достигают поверхности земли, так как они взаимодействуют с атомами воздуха, рождая потоки частиц вторичного космического излучения. Поэтому основную массу космических лучей, достигающих поверхности земли, составляет вторичное космическое излучение.