Дополнительным источником радиоактивного загрязнения местности в районе взрыва служит наведенная радиоактивность, возникающая в результате воздействия потока нейтронов, образующихся при цепной реакции деления урана или плутония, на ядра атомов различных веществ окружающей среды (реакция активации). Захват нейтронов ядрами многих химических элементов приводит к появлению радиоизотопов (продуктов активации) в атмосферном воздухе, воде почве, в материалах сооружений и т. п. Большая часть их распадается с испусканием β-частиц и гамма-излучения со сравнительно малым периодом полураспада (за исключением 14С).
Суммарная активность остатков ядерного заряда и радионуклидов, образовавшихся в результате реакции активации, намного меньше общей активности радиоактивных продуктов деления. Последние являются основным источником радиоактивного загрязнения внешней среды.
При термоядерных взрывах в момент реакции синтеза (слияние ядер легких элементов — дейтерия и трития и образование более тяжелого ядра — гелия, происходящее при десятках миллионов градусов) возникает интенсивный поток нейтронов, вызывающий образование значительного количества продуктов активации (наведенной радиоактивности), в частности трития, берилия, углерода- 14.
Ядерные устройства, основанные на принципе деление — синтез — деление, загрязняют окружающую среду радиоактивными осколками деления 238U и 239Рw, а также тритием и радиоуглеродом. На 1 мегатонну ядерного взрыва образуется 7,4 кг радиоуглерода -14, что количественно в среднем равняется образованию этого изотопа в атмосфере под действием космических лучей в течение года.
Загрязнение местности зависит от характера ядерного взрыва (наземный, воздушный и т.д.), калибра ядерного устройства, атмосферных условий (скорость ветра, влажность, выпадение осадков, распределение температуры по высоте, которое влияет на перемещение масс воздуха), географических зон и широт и др.
Наземные взрывы создают сильное загрязнение РПД непосредственно в районе взрыва, а также на прилегающей территории, над которой проходило радиоактивное облако.
При воздушном взрыве не происходит значительного локального загрязнения местности РПД, так как они распыляются на очень большой площади.
Однако под влиянием атмосферных осадков, выпавших в момент прохождения радиоактивного облака, может повыситься загрязнение в том или ином районе.
Средние и малые взрывы до нескольких килотонн тротилового эквивалента загрязняют в основном тропосферу (до высоты 18 км). Крупные взрывы несколько мегатонн загрязняют главным образом стратосферу (до высоты 80 км). Благодаря наличию воздушных течений частицы РПД способны совершать очень большой путь, вплоть до нескольких оборотов вокруг земного шара, поэтому радиоактивное загрязнение может возникнуть в любой точке земного шара, т. е. наступает глобальное загрязнение.
По данным американских авторов В. Лэнгхэма и Е. Андерсена (1959), при взрывах зарядов большой мощности (несколько мегатонн) продукты взрывов распределяются следующим образом: при взрыве на большой высоте 99% их задерживается в стратосфере, локальных загрязнений нет; при наземном взрыве 20% из них попадает в стратосферу, а 80% выпадает в районе взрыва; при взрывах у поверхности моря 30% остается в стратосфере, а 70% выпадает локально.
Скорость выпадения радиоактивных осадков зависит от времени года и от широты местности: она больше в северном полушарии, чем в южном. В пределах небольших районов скорость выпадения может колебаться также в зависимости от выпадения дождя или снега в течение года.
РПД могут находиться в тропосфере около 2—3 мес., в стратосфере — 3—9 лет. Вследствие этого при воздушных взрывах на землю в основном выпадают только долгоживущие радиоактивные продукты, так как короткоживущие изотопы распадаются, находясь в стратосфере.
По данным некоторых исследователей, ежегодно из имеющихся в стратосфере РПД осаждаются 10% 90Sг и 137Сs.
В связи с широким использованием атомной энергии в мирных целях все большее значение приобретают радиоактивные отходы промышленных предприятий и установок (атомных электростанций, предприятий по переработке ядерного материала, реакторов), лабораторий и научно-исследовательских институтов, работающих с РВ высокой активности, как потенциальный, а в отдельных случаях и как реальный фактор локального (на ограниченной территории) загрязнения внешней среды.
В настоящее время человек сталкивается также с искусственными источниками радиации, не связанными с загрязнением внешней среды. К ним относятся рентгеновские установки, ускорители элементарных частиц, закрытые источники радиоактивных изотопов, использующиеся в медицине, промышленности и научно-исследовательской работе.
Вопрос 10. Методы радиометрии препаратов.
Основные методы измерения радиоактивности. Радиоактивность препаратов можно определить абсолютным, расчетным и относительным (сравнительным) методами. Наиболее широкое практическое применение имеет последний.
Абсолютный метод основан на применении прямого счета полного числа частиц распадающихся ядер в условиях 4π-геометрии (четырехпийной). В этом случае активность препаратов выражается не в импульсах в минуту, а в единицах радиоактивности — Ки, мКи, мкКи. Для этих целей используют 4π -счетчики, конструкция которых позволяет поместить измеряемый образец внутрь счетчика (газопроточный счетчик типа СА-4БФЛ, сцинтилляционный счетчик с растворением пробы в жидком сцинтилляторе или помещением пробы внутрь его и др.).
Расчетный метод определения абсолютной активности альфа - и бета - излучающих изотопов заключается в том, что измерение осуществляется при помощи обычных газоразрядных или сцинтилляционных счетчиков.
Чтобы сопоставить скорость счета, выраженную в импульсах в минуту, с активностью в единицах кюри вводят в результаты измерения ряд поправочных коэффициентов, учитывающих потери излучения при радиометрии.
где N — скорость счета в имп/мин за вычетом фона; ώ — поправка на геометрические условия измерения (телесный угол); ε — поправка на разрешающее время счетной установки; — поправка на поглощение излучения в слое воздуха и окне (стенке) счетчика; ρ — поправка на самопоглощение в толще препарата; q— поправка на обратное рассеяние от подложки; r— поправка на схему распада; γ — поправка на гамма-излучение при смешанном бета -, гамма-излучении; т — навеска измеряемого препарата в мг, 2,22 *1012 — переводной коэффициент от числа распадов в минуту к кюри (1 Ки = 2,22*1012 расп/мин).
где 1 * 106 — переводной коэффициент на 1 кг при измерении m в мг.
Относительный (сравнительный) метод определения радиоактивности основан на сравнении активности исследуемого препарата с активностью стандартного препарата (эталона), содержащего известное количество изотопа. Достоинство относительных измерений в их простоте, оперативности и удовлетворительной достоверности.
Благодаря этому относительный метод нашел широкое применение в практической радиометрии и в научных исследованиях с использованием радиоактивных изотопов.
Для правильного проведения измерений относительной активности исследуемых препаратов необходимо, чтобы схема распада, вид и энергия излучения эталона существенно не отличались от исследуемого радионуклида. Идеальным эталоном был бы радиоизотоп, одноименный с изотопом, содержащимся в измеряемом препарате.
Желательно иметь для эталона долгоживущий радиоактивный изотоп, так как его можно использовать длительное время без внесения поправок на распад. При определении суммарной бета - активности в объектах ветнадзора в качестве эталона применяют 40К, 90Sr, 90Y, 23Th и др.
Эталон и исследуемые препараты должны иметь одинаковую форму, площадь и толщину активного слоя, их одинаково располагают относительно счетчика. Подложки, на которые нанесены измеряемые препараты и эталон, должны быть выполнены из одинакового материала и иметь, одинаковую толщину. Все измерения надо проводить на одной установке с одним и тем же счетчиком. Следует стремиться к тому, чтобы измерения всех препаратов были выполнены с одинаковой статистической точностью.
Измерив, скорость счета Nэот эталона и препарата Nпр, рассчитывают активность препарата Апр в распадах в минуту по формуле: