Параметры дыхания устанавливаются и отображаются на блоке управления, а также определяются программой управления микропроцессором и выбранным режимом работы аппарата.
Для контроля, за параметрами дыхания используются датчик давления и датчик температуры у тройника пациента и датчик температуры в увлажнителе. Сигналы от датчиков поступают в устройство сопряжения с датчиками, а затем преобразованные сигналы выдаются в микропроцессор, расположенный в блоке управления.
Микропроцессор выдает сигналы управления, которые через схему управления исполнительными устройствами, выдаются на соответствующие исполнительные устройства (электропривод компрессора, клапан вдоха, клапан выдоха нагреватель в увлажнителе и нагреватель в шланге вдоха).
3.3. Режимы работы аппарата
Режим CMV(ControlMecanicalVentilation) —управляемая искусственная вентиляция легких.
Сущность данного режима в том, что во время вдоха в дыхательном контуре аппарата создается давление дыхательного газа, превосходящее давление окружающей среды, и под воздействием разности давлений газ вдувается в легкие пациента. При достижении заданного значения дыхательного объема газа в контуре аппарата происходит переключение с фазы вдоха на выдох, при котором давление в контуре аппарата, а следовательно и в легких пациента, свободно падает до уровня атмосферного.
В этом режиме заданными величинами являются:
• дыхательный объем;
• частота дыхания;
• отношение времени вдоха и выдоха.
Указанные величины устанавливаются на аппарате врачом в зависимости от состояния пациента.
Режим применяется в том случае, когда пациент не в состоянии поддерживать собственное дыхание.
Режим CMV+S (ControlMecanicalVentilation +Sign) -управляемая искусственная вентиляция легких с периодическим раздуванием легких .
CMV+S является подрежимом классического режима CMVи отличается от него тем , что периодически аппарат выдает удвоенный объем вдоха для раздувания легких.
Режим SIMV (SinchronizetIntermittentMandatoryVentilation) - синхронизированная прерывистая принудительная вентиляция.
Сущность этого режима состоит в том, что при восстановлении самостоятельного дыхания больной может самостоятельно спонтанно дышать через дыхательный контур аппарата, однако для поддержания гарантированного объема вентиляции аппарат периодически включается для проведения одного "принудительного" цикла после нескольких циклов спонтанного дыхания . Указанные циклы синхронизированы во времени со вдохами пациента с помощью триггерно-го блока аппарата .
Частоту таких включений определяет оператор путем установки величины дыхательного объема, времени вдоха и выдоха.
Этот режим позволяет тренировать дыхательную мускулатуру пациента.
Режим A+CMV(AssistantControlMecanicalVentilation) — (триггерный режим) вспомогательная управляемая искусственная вентиляция легких.
Этот режим осуществляется с помощью триггерного устройства аппарата, предназначенного для переключения распределительного устройства аппарата на вдох вследствие дыхательного усилия паци-
ента . При проведении триггерного способа искусственной вентиляции легких следует помнить о регулировании еще одного параметра -времени ожидания дыхательной попытки .
Регулировка этой величины введена в триггерное устройство для того, чтобы обеспечить переход на управляемый "принудительный" режим вентиляции через определенный промежуток времени после того, как у пациента прекратилось самостоятельное дыхание. Исключительно важная для больных в тяжелом бессознательном состоянии эта мера не имеет значения для больных с более или менее удовлетворительным состоянием и сохраненным сознанием. У таких больных при сеансах.
искусственной вентиляции легких время ожидания попытки должно быть установлено на достаточно большую величину.
Режим PEEP (PositiveandExspiratoryPressure) - вентиляция с положительным давлением в конце выдоха.
Это способ вентиляции с активным вдохом и пассивным выдохом , при котором легкие пациента во время выдоха не опорожняются до функциональной остаточной емкости, а находятся под определенным остаточным положительным давлением, которое выставляет оператор.
Ряд исследований показал, что искусственная вентиляция легких при этом способе, увеличивая функциональную остаточную емкость легких, уменьшает эффект преждевременного закрытия дыхательных путей, поддерживает проходимость воздухоносных путей, препятствует впадению альвеол. Однако РЕЕР нежелателен при хронической обструкции дыхательных путей, при которой ослабленные
дыхательные пути и альвеолы и без этого имеют тенденцию к раздуванию.
Также аппарат может работать и в режиме BiPEEP (BinaryPositiveEndExpiratoryPressure ) - режиме искусственной вентиляции легких с периодически меняющимися параметрами РЕЕР.
I
Режим СРАР ( ContinuousPositiveAirwayPressure ) - вентиляция с постоянным положительным давлением в дыхательных путях .
В этом режиме осуществляется поддержка собственного спонтанного дыхания пациента постоянным положительным давлением в дыхательных путях.
Величину постоянного положительного давления устанавливает оператор.
Помимо перечисленных аппарат обеспечивает также следующие режимы :
- ВiF (BinaryFlow)- вспомогательный поток газа ;
-SB (SpontaneusBreath) - режим спонтанного дыхания пациента через аппарат.
Режимы работы аппарата показаны на рисунках 3.2. и 3.3.
4. Разработка процессорного модуля
4.1. Алгоритм работы процессорного модуля
Процессорный модуль обеспечивает управление режимами работы аппарата, а также осуществляет управление работой увлажнителя и системы аварийно-предупредительной сигнализации.
Параметры дыхания устанавливаются и отображаются на блоке управления, а также определяются программой управления микропроцессором и выбранным режимом работы аппарата.
Для контроля за параметрами дыхания используются датчик давления и датчик температуры у тройника пациента и датчик температуры в увлажнителе. Сигналы от датчиков поступают в устройство сопряжения с датчиками, а затем преобразованные сигналы выдаются в микропроцессор, расположенный в блоке управления.
Микропроцессор выдает сигналы управления, которые через схему управления исполнительными устройствами, выдаются на соответствующие исполнительные устройства (электропривод компрессора, клапан вдоха, клапан выдоха нагреватель в увлажнителе и нагреватель в шланге вдоха). Алгоритм работы процессорного модуля приведен на рисунке 4,1. Работа начинается при включении питания, вначале тестируется оборудование, а именно : проверяется ПЗУ, ОЗУ, процессор. Если оборудование не исправно, то выдается сообщение и аппарат останавливается, если тест прошел успешно, то далее автоматически устанавливаются начальные параметры для проведения искусственной вентиляции, и в процессе работы их можно будет изменять с помощью клавиатуры блока управления.
Далее происходит проверка, включен или выключен режим проведения дезинфекции, если включен, то происходит дезинфекция дыхательного контура. При этом периодически происходит проверка .
истекло ли время отведенное на дезинфекцию, если время истекло, то происходит остановка аппарата. Если режим дезинфекции выключен, то начинается рабочий цикл.
В течении одного рабочего цикла происходит отработка сигнала поступившего от нажатой клавиши, далее проверяется, истекло ли время вдоха или нет. Если истекло , то вырабатывается сигнал отключения двигателя и открытия клапана выдоха, иначе, сигнал включения двигателя и закрытия клапана выдоха. Потом происходит выдача параметров на индикацию,
Затем проверяется включен ли увлажнитель, если включен, то проверяется температура увлажненной дыхательной смеси в увлажнителе и в тройнике пациента. Если температура выше нормальной, го поступает команда отключить нагреватель, при повышении температуры выше 40°С срабатывает аварийная сигнализация. Когда температура ниже нормальной, то поступает команда включить нагреватель.
Далее выполняется проверка давления в дыхательном контуре, при отклонении давления вдоха более чем на 30% от установленного значения срабатывает аварийная сигнализация. После выполнения перечисленных выше действий начинается новый цикл.
4.2. Электрическая схема процессорного модуля
Процессорный модуль выполнен на основе восьмиразрядной однокристальной микроЭВМ (ОМЭВМ) семейства МК51. Через четыре программируемых порта ввода/вывода он взаимодействует со средой в стандарте ТТЛ-схем с тремя состояниями выхода. ОМЭВМ КР1816ВЕ51 может использовать до 64 Кбайт внешней постоянной или перепрограммируемой памяти. В модуле процессорном в качестве внешней памяти используется микросхема К573РФ6 с объемом памяти 8 Кбайт. Эта микросхема относится к
группе РПЗУ-УФ стирание информации которой производится источником УФ излучения.
ОМЭВМ КР1816ВЕ51 содержит встроенное ОЗУ памяти данных емкостью 128 байт , а для расширения общего объема оперативной памяти данных используется микросхема КР537РУ10 с объемом памяти 2 Кбайта. Память данных предназначена для приема, хранения и выдачи информации в процессе выполнения программы.
Связь со средствами расширения осуществляется через системную магистраль образованную линиями порта Р0 ( шина адрес/данные ), порта Р2 ( старшая часть адреса ), сигналами АLЕ ( строб фиксации адреса ),
Р5ЕК ( строб чтения памяти программы ) , а также порта РЗ . Линии порта РЗ используется для последовательного ввода-вывода (РЗ.О. , Р3.1), ввода запроса на прерывание ( Р 3.3. ) , управления циклами обмена (Р3.6 , Р3.7).
При обращении к внешней памяти данных (КР537РУ10) формируется восьмиразрядный адрес, выдаваемый через порт РО ОМЭВМ. Возможно формирование шестнадцатиразрядного адреса, младший байт которого выдается через порт РО, а старший — выдается через порт Р2. Байт адреса , выдаваемый через порт РО фиксируется во внешнем регистре (микросхема ВГ34 КР1533ИР22) по отрицательному фронту сигнала АЬЕ, т.к. в дальнейшем линии порта РО используются как шина данных, через которую байт данных принимается из памяти (ОВ8 КР537РУ10) при чтении или выдается в память данных при записи. При этом сигнал чтение стробируется сигналом ОМЭВМ КГ) , а запись — сигналом ОМЭВМ РУК. При работе с внутренней памятью