Смекни!
smekni.com

Разработка процессорного модуля аппарата искусственной вентиляции лёгких (стр. 5 из 13)

Постепенно расширяется использование ге­нератора вдоха, выполняемого в виде меха, цилиндра с поршнем и т. п., приводимых в движе­ние специальным электроприводом, который позволяет гибко управлять всеми характеристиками движения подвижного элемента, а следовательно,
потока газа и вентиляции. Режимы, использую­щие в линии выдоха динамически создаваемое постоянное давление, реализовать сложно. Достоин­ством является возможность обойтись как без
внешнего пневмопитания, так и без встроенного компрессора. Снижение размеров и массы такихаппаратов сочетается с тем, что потребляемая в данный момент мощность определяется режимом вентиляции и максимальная нагрузка на привод нужна очень редко. Такое устройство встречается
пока только в аппаратах средней сложности, пред­назначенных для взрослых, например в аппарате фирмы "Kontron", в модели "Веаг-33".

4. Описанные выше схемы ориентированы на подачу определенного потока или объема газа, а создающееся при этом в дыхательном контуре давление вторично. Известна, однако, схема, пер­вично ориентированная на создание заданного давления. Ее основу составляет емкость с регули­руемой эластичностью, в которую газовая смесь подается постоянно, а отбирается только во время вдоха. Принципиальное преимущество — возмож­ность накопления газа, из-за чего мгновенное значение подачи газа всегда равно минутной вен­тиляции, но не превышает ее, как в других схемах. Пример реализации — аппараты семейства " Servoventilator – 900 фирмы "Siemens".

Во всех современных аппаратах, кроме про­стейших моделей для скорой помощи и аппаратов для ИВЛ вручную, применение микропроцессоров стало стандартным приемом даже для моделей с пневматическим приводом. Пневматические уст­ройства для управления аппаратами практически вышли из употребления. Преимущества микро­процессорного управления по гибкости, разнооб­разной обработке и визуализации информации весьма велики. Однако прослеживается тенденция придания аппаратуре возможностей, которые лег­ко реализуются программными методами, но чет­кие показания к их применению либо очень узки, либо еще не определены.

Известно, что важные характеристики аппарата ИВЛ — стабильность установленных режимов и легкость настройки на них — во многом опреде­ляются примененным принципом переключения с вдоха на выдох. Поскольку микропроцессорная техника легко обеспечивает дозирование вре­менных характеристик, наибольшее распростра­нение получило переключение по времени. Вме­сте с тем для реализации многих режимов работы этот первичный механизм дополняется переклю­чением аппарата на выдох по достижению задан­ного давления в дыхательном контуре и изредка — вследствие подачи заданного объема. Другим ас­пектом микропроцессорного управления стало широкое применение, для стабилизации ряда ха­рактеристик внутренних обратных связей. Приме­ром может служить реализованное в моделях "Спирон-201" и "Спирон-Вита-402" автоматиче­ское поддержание заданной вентиляции при из­менении оператором относительной длительности вдоха или величины задержки на вдохе.

Одновременно микропроцессорная техника по­зволяет так сильно оснастить аппарат устройства­ми для мониторного контроля и измерения пока­зателей вентиляции и состояния пациента, на­столько изощренно обрабатывать и представлять соответствующую информацию, что становится трудным обеспечить безопасность пациента без таких устройств и, более того, грамотно использо­вать возможности аппарата ИВЛ. Справедливо ут­верждать, что важнейшая тенденция развития ап­паратов ИВЛ — превращение многофункциональ­ных аппаратов ИВЛ в своеобразные информаци­онно-управляющие центры.

Прообразом подобного симбиоза можно счи­тать аппарат ИВЛ "Evita-4" германской фирмы "Drager", в котором на большой цветной экран выводятся значения задаваемых и измеряемых по­казателей вентиляции, несколько функциональ­ных кривых, задаваемые границы сигнализации, данные о пациенте и о техническом обслужива­нии и др. Даже управление большинством характеристик осуществляется изображенными на эк­ране "виртуальными" органами управления. Нуж­но все же отметить, что и стоимость этого аппара­та не менее впечатляющая.

На основании приведенных сведений можно сформулировать следующие перспективы разви­тия отечественной аппаратуры.

Перспективы развития аппаратов ИВЛ

Будут продолжать расширяться функцио­нальные возможности аппаратов наиболее высо­кого класса. К режимам управляемой (во всех ее разновидностях), вспомогательной и периодиче­ской вентиляции и самостоятельного дыхания с постоянно положительным уровнем давления бу­дут добавлены те новые режимы, показания к применению и реализация которых уже установ­лены и которые не требуют значительного техни­ческого усложнения, а именно, поддержки давле­ния и вентиляции с двумя фазами положительно­го давления.

Будут продолжаться обеспечиваться работа аппаратов без подачи извне сжатого воздуха и ис­пользование сжатого кислорода только для оксигенации вдыхаемого воздуха. Для аппаратов наи­более высокого класса будет преимущественно ис­пользоваться более гибкая схема с управляемыми
клапанами в линиях вдоха и выдоха. В ней найдут применение электромагнитные устройства, позво­ляющие управлять не только временными харак­теристиками, но и расходом газа.

В более простых аппаратах, видимо, будет пре­имущественно применяться схема с управляемым электродвигателем и мехом, а также схема с нако­пительной емкостью. В этих моделях перспектив­но применение встроенного аккумулятора для обеспечения 20—30 мин работы аппарата после нарушения электропитания.

По-прежнему будет применяться микропроцессорное управление с использованием совре­менной элементной базы и обеспечиваться разборность дыхательного контура. Еще большее
внимание будет уделено упрощению управления аппаратами, в том числе путем использования ав­томатической стабилизации заданных оператором характеристик.

Особенно быстро будет развиваться оснаще­ние аппаратов встроенными и придаваемыми мо­ниторами с измерением показателей давления и объемных характеристик ИВЛ и с сигнализацией о выходе основных характеристик вентиляции из заданного диапазона. В аппаратах высокого клас­са, по-видимому, станет обязательным вывод информации, в том числе функциональных кривых на экран.

2.3. Аппараты искусственной вентиляции легких

Фирма DRAGER является признанным мировым лидером в про­изводстве аппаратов ИВЛ , историю создания которых ведет с 1907г., когда Генрих Драгер изобрел дыхательный прибор для первой помощи и возвращения людей к жизни .Дыхание сегодня обеспечивается при­менением управляемой компьютером техники , что позволяет создать не­обходимые требования безопасности . Далее будут рассмотрены некото­рые аппараты выпускаемые этой фирмой : ЕV 801 , EDAM 2 .

Аппарат EV801 . Предназначен для длительной по времени вен­тиляции легких для домашнего, транспортного и клинического приме­нения .

EV 801 - это управляемый по времени дыхательный прибор . Экс­плуатируется без медицинского сжатого воздуха . Питается от электри­ческой сети , от внешнего постоянного напряжения ( батареи 12В или 24В).

Независимость от сжатого воздуха обеспечивается за счет встро­енного насоса.

Переключение питания с одного источника на другой , например , при пропадании напряжения сети, происходит само собой без прекра­щения обслуживания пациента .

Весо-габаритные характеристики , возможность использования автономного источника питания , простота обслуживания , возмож­ность применения как для кратковременной , так и для длительной вентиляции легких , позволяют решать дыхательную проблему прак­тически в любых условиях : в машине скорой помощи, в реанимаци­онном отделении, в жилом помещении, в инвалидной коляске , в ав­томобиле .

Параметры дыхания, необходимые для пациента, задаются с панели управления EV 801 . Микропроцессор управляет дыханием и контролирует его в соответствии с режимом , установленным врачом .

Встроенный насос всасывает воздух из окружающего простран­ства через фильтр, который очищает воздух от частиц пыли. Затем сжатый поршнем воздух через систему шлангов подается к пациенту.

Когда пациенту подведен соответствующий объем, например, достигнуто заданное значение давления , вдох сразу же прекращается . Поршень останавливается и открывается клапан выдоха , через кото­рый пациент выдыхает . Одновременно насос всасывает через фильтр воздух для следующего цикла .

EV 801 имеет следующие режимы работы : СМV , SIMV , РЕЕР .

Прибор обладает следующим встроенным мониторингом :

давление в дыхательных путях;

апное ( остановки дыхания ) ;

недопустимых установках параметров;

электропитания ;

функционирования прибора.

EV 801 может комплектоваться увлажнителем .

Оптический акустический сигнал тревоги сигнализирует о неот­ложном сообщении. Таким образом , пользователю автоматически сообщается, на что он должен отреагировать. Своевременное правильное реагирование обеспечивается тем , что светодиоды индицируют причи­ну сообщения. Пользование прибором при этом облегчается и умень­шается вероятность ошибок в обслуживании прибора.

Технические данные :

Частота дыхания , 1/минот 1 до 38