за минуту. Обычно рассматривают минутный объем альвеолярной вентиляции , который равен разности дыхательного объема и общего объема мертвого пространства , умноженной на частоту дыхания .
Дыхательный объем - это количество дыхательного газа , подаваемого в легкие в течении одного дыхательного цикла . Дыхательный объем должен быть достаточным для промывки "мертвого пространства " и удаления углекислого газа из легких . Зависит от пола пациента , массы его тела, частоты дыхания, возраста .
Частота дыхания - это количество дыхательных маневров ( вдох-выдох ) за минуту.
Значения основных параметров искусственной вентиляции легких нормированы ГОСТ 18856-81 .
Данный аппарат ИВЛ предназначен для длительной или повторно-кратковременной ИВЛ для взрослых и детей старше 6 лет в отделениях интенсивной терапии и реанимации, послеоперационных отделениях и палатах.
ГОСТ 18856-81 для аппаратов группы 2 устанавливает следующие минимальные диапазоны регулирования параметров ИВЛ:
- дыхательный объем 0,2 ... 2,0 л;
- минутная вентиляция 3 ... 30 л/мин;
- частота дыхания 10 ... 50 л/мин;
- отношение длительности вдоха и выдоха 1:1,5... 1:2.
Аппарат используется в различных случаях медицинской практики. ИВЛ проводится больным разной возрастной категории. Параметры ИВЛ у разных людей сильно отличаются, поэтому целесообразно расширить диапазон регулирования параметров ИВЛ (дыхательный объем, минутную вентиляцию, частоту дыхания и т.д ), чтобы врач мог в каждом конкретном случае установить требуемые параметры ИВЛ.
Анализируя существующие аппараты ИВЛ и в соответствии с ГОСТ 18856-81 в рассматриваемом аппарате необходимо иметь возможность регулировать параметры в следующих пределах:
- дыхательный объем 0,1 ... 2,5 л;
- минутная вентиляция 1 ... 50 л/мин;
- частота дыхания 10 ... 99 л/мин;
- отношение длительности вдоха и выдоха 1:4 ... 4:1.
Границы регулирования положительного давления в конце вдоха должны быть 0,2-2 кПа . В аппарате должен обеспечиваться контроль среднеинтегрального и текущего давления .
Аппарат должен обеспечивать подачу дыхательной смеси пациенту по нереверсивному дыхательному контуру . Необходимо также обеспечить возможность работы аппарата во многих режимах.
Для обеспечения этих требований целесообразно управление аппаратом осуществлять с помощью микропроцессора. Применение перепрограммируемой памяти программ позволит создать гибкую систему управления.
Индикацию установленных параметров для улучшения восприятия необходимо отображать на цифровых табло. При работе аппарата должны отображаться такие параметры : минутная вентиляция , частота вентиляции , отношение длительности вдоха к длительности цикла , объем вдоха , скорость вдувания , температура дыхательной смеси.
Увеличение температуры и влажности вдыхаемого воздуха на пути окружающая среда - легкие происходит благодаря уникальной способности дыхательных путей независимо от колебаний температуры и влажности воздуха нагревать вдыхаемую газовую смесь до температуры тела и насыщать ее водяными парами.
При искусственной вентиляции легких возникает местное пересыхание и охлаждение слизистой оболочки трахеи и бронхов. В зависимости от продолжительности и интенсивности действия этих факторов могут возникнуть повреждения слизистой оболочки трахеи и бронхов, разрушение мерцательного эпителия, образование корок, нередко закупоривающих бронхи, возникновение деструктивного бронхита, чреватого тяжелыми бронхолегочными осложнениями. У маленьких детей к этому могут добавиться нарушения общего водного и теплового баланса.
На основании изложенного выше при ИВЛ необходимо использовать увлажнитель для увлажнения и обогрева вдыхаемого газа. Границы регу-
лирования температуры газа в тройнике пациента должны быть32-38 °С, а относительная влажность газа 80-100% .
При выдохе дыхательная смесь охлаждается и влага конденсируется на поверхности дыхательных шлангов. Конденсат может попасть в аппарат, что нарушит его работу или в легкие пациента. Поэтому необходимо установить на шланге выдоха отстойник куда бы стекала конденсировавшаяся жидкость.
В качестве дыхательной смеси в аппарате могут использоваться кислород и кислородно-воздушная смесь , закись азота , атмосферный воздух. Когда к аппарату ИВЛ подводят сжатые газы, то необходимо предотвратить возможность попадания во входную линию аппарата любого другого газа, кроме того, для которого она предназначена. Такая опасность должна предотвращаться применением невзаимозаменяемым для разных газов соединений между их источниками и аппаратом, надлежащей маркировкой соединительных устройств. Прокладка газовых магистралей внутри аппарата также должна осуществляться с применением невзаимозаменяе-
^
мых соединений и надлежащей маркировки.
Необходимо соблюсти меры для предотвращения повышения давления в дыхательном контуре выше допустимого 6кПа (60 см вод.ст.), что может привести к разрыву легких. Для этого можно использовать пружинный предохранительный клапан.
Во избежание несчастных случаев во время ИВЛ, особенно при длительной ИВЛ, должны быть предусмотрены световая и звуковая сигнализа-
»
ции в случаях: превышение температуры дыхательной смеси выше 41 °С, непредвиденного отключения напряжения питающей сети , разгерметизации дыхательного контура.
Электрическое питание аппарата должно осуществляться от сети переменного тока напряжением 220В с частотой 50Гц.
Аппарат ИВЛ должен быть надежным и удобным в эксплуатации и обеспечивать минимальные затраты времени, энергии и средств на ремонт.
При этом минимальная рабочая температура +10°С, максимальная рабочая температура +35 °С. Аппарат ИВЛ не работает на открытом воздухе и не подвергается воздействию атмосферных факторов.
3.2 Существующие методики проверки объемных показателей аппаратов искусственен вентиляции легких (ИВЛ)
Контроль объемных показателей — дыхательного объема Vt и минутной вентиляции VM занимает важное место в создании и производстве аппаратов ИВЛ. Методики проверки этих и других характеристик аппаратов должны быть адекватны условиям их применения обеспечивать необходимую точность и воспроизводимость результатов и по возможности не требовать использования сложного нестандартного оборудования. Далее будут рассмотрены только методики измерения Vt поскольку минутная вентиляция определяется как VM =Vm *f (f- частота вентиляции) или же делением Vt, суммированного за целое число дыхательных циклов, на их длительность.
До последнего времени для определения применялась одна из методик по ранее разработанному стандарту [3] (рис. 1).
Преимущество схемы состоит в.том, что во время выдоха нереверсивный клапан _2 пропускает в спирометр 5 только тот газ, который действительно вентилирует модель легких, однако данный клапан должен работать достаточно четко и обладать низким сопротивлением. Принципиальный недостаток схемы — поступление в спирометр не только действительного дыхательного объема, но и части вышедшего из аппарата 1 объема, который был затрачен на повышение во время вдоха давления газа во всех эластичных и жестких частях дыхательного контура, соединенных с пациентом. На величину такой потери объема влияет растяжимость аппарата Сa, которая во время вдоха подключена параллельно Сп (рис. 7), и можно предположить, что эта потеря объема пропорциональна величине Сa Сn.
Хорошо известно, что значения Сп сильно зависят от антропометрических данных и состояния органов дыхания пациента, но для проверки аппаратов ИВЛ обычно используются следующие стандартизованные характеристики (табл. 1).
Значения Са определяются схемой и конструкцией аппарата, типом дыхательных шлангов, числом и видом включенных в дыхательный контур частей и т. п. В табл. 2 приведены частично измеренные нами и частично заимствованные из эксплуатационных документов данные о растяжимости Са некоторых аппаратов ИВЛ и их компонентов.
Рис.1. Схемы измерения дыхательного объёма VT
1- проверяемый аппарат; 2- неверсивный клапан; 3-сопротивление модели легких Rn; 4- растяжимость модели легких Cn; 5- Измеритель объема;
6- выходное отверстие аппарата;
Изменения по ГОСТу Р ИСО 10651.1-99 и СТ МЭК 601-2-12:2001
Введенный в действие - новый стандарт [2] и стандарт [10] требуют, чтобы аппараты ИВЛ, исключая предназначенные для применения во время ингаляционной анестезии на дому и во время транспортирования, оснащались каналом измерения выдыхаемого дыхательного объема и (или) минутной вентиляции с погрешностью не более ± 20% от действительного значения для. объема свыше 100 мл:. Для контроля данного канала должна применяться методика с. использованием схемы, представленной на рис. 2.
Действительное значение дыхательного объема по данной методике определяется по формуле
VT = Cn* (Pmax – Pmin), (1)
где Сп — растяжимость модели легких; Рmax и Pmin — наибольшее и наименьшее значения давления в модели легких в дыхательном цикле.
Необходимость вычисления действительного объема, вентилирующего модель легких, в то время как через датчик 2, кроме этого объема, проходит еще и объем, затраченный на изменение во время вдоха давления в дыхательном контуре, требует особого внимания ко всем факторам, которые мо-
гут влиять на калибровку канала. Другая особенность проверки по ГОСТу Р ИСО 10651.1—99 -оговоренные условия ее определения (табл. 3-е конкретизацией-по МЭК 601-2-12:2001) [4, 6].
Такая формулировка условий проверки требует контролировать погрешность измерения объема Vt только при одной комбинации характеристик легких пациентов данной возрастной группы к только на одной комбинации показателей вентиляции. Поэтому формально изготовитель аппаратов не отвечает за погрешность в любых других условиях. Кроме того, выбранные комбинации объема и частоты не являются типичными для данной возрастной группы пациентов. Видимо, эти требования следует рассматривать как минимально необходимые и стараться обеспечить предельную погрешность в достаточно широком диапазоне показателей вентиляции и характеристик органов дыхания пациентов данной возрастной группы. Приведенные особенности ГОСТа Р ИСО 10651.1—99 вы