Смекни!
smekni.com

Разработка процессорного модуля аппарата искусственной вентиляции лёгких (стр. 9 из 13)


двигают следующие задачи для выполнения новых требований:

1)обеспечить получение нужного номинала растяжимости модели легких и стабильность этого
показателя при ее эксплуатации с увеличением диапазона вводимых в модель объемов;

2) обеспечить настройку требуемых номиналов сопротивлений, их воспроизводимость при изго­товлении и стабильность в процессе эксплуатации;

3) понять и количественно охарактеризовать воздействие растяжимости аппарата на действи­тельные значения дыхательного объема;

4) оценить влияние других факторов на разницу между заданным и действительным объемом.

Аналогичное требование к этим аппаратам имеется в дей­ствующем ГОСТе Р МЭК 60601-2-13—2001.

Рис.3. Схема проверки погрешности измерения выдыхаемого объёма по новому стандарту: 1 – аппарат ИВЛ; 2 – проверяемый измеритель объёма; 3 – сопротивление; 4- модель легких; 5- датчик давления; 6 – регистратор давления; 7 – дыхательный контур.


Для выполнения требований вступившего в дей­ствие ГОСТа Р ИСО 10651.1—99 к точности изме­рения действительного дыхательного объема и к калибровке соответствующего канала аппарата ИВЛ рекомендуется:

1.В качестве действительного значения дыхательного объёма использовать объем, рассчитанный как произведение растяжимости модели лег-
ких и разности максимального и минимального давлений дыхательного цикла, измеренных внутри модели.

Для моделирования растяжимости легких пациента применять только пневматические модели легких, обеспечивая изотермические характери­
стики колебаний давления в них и корректировку растяжимости в соответствии с атмосферным дав­лением в момент применения моделей.

Для обеспечения воспроизводимости и ста­бильности моделирования сопротивления дыха­тельных путей пациента использовать нелинейные
дроссели, изготовленные с необходимой точно­стью и откалиброванные на верхнем пределе диа­пазона скоростей газа для каждой возрастной груп­пы пациентов.

Ввиду значительного влияния внутренней растяжимости аппарата ИВЛ на действительный дыхательный объем применять схемные и конст­руктивные приемы для всемерного снижения вели­чины этой характеристики аппарата, указывать ее в эксплуатационной документации.

Дополнять режимы проверки погрешности измерения дыхательного объема, указанные в ГОСТе Р ИСО 10651.1—99, проверкой на несколь­
ких других комбинациях установленных значений дыхательного объема и частоты вентиляции, а так­же при изменении на этих режимах растяжимости
и сопротивления модели легких в пределах, харак­терных для пациентов данной возрастной группы.

6. Учитывать, что внутреннее сопротивление ап­
парата и его инерционные свойства могут снизить
положительное влияние задержки на вдохе на выравнивание давления в участках легких с различ­ными постоянными времени, а также привести к появлению непреднамеренного внутреннего ПДКВ; вероятность и величина этого влияния воз­растает при росте отношения Са/Сn, т. е. при вен­тиляции подростков и детей.

7. Высокочастотные выбросы, нередко фикси­руемые на функциональных кривых давления и скорости газа, объясняются главным образом след­ствием инерционных свойств аппарата ИВЛ в мо­мент резкого изменения величины и (или) направ­ления движения газа и проявляются в виде высо­кочастотных затухающих колебаний, возникающих в момент резкого изменения состояния системы и моменты смены фаз дыхательного цикла (вдува­ние, пауза, выдох).

Перспективы развития аппаратов ИВЛ

Будут продолжать расширяться функцио­нальные возможности аппаратов наиболее высо­кого класса. К режимам управляемой (во всех ее разновидностях), вспомогательной и периодиче­ской вентиляции и самостоятельного дыхания с постоянно положительным уровнем давления бу­дут добавлены те новые режимы, показания к применению и реализация которых уже установ­лены и которые не требуют значительного техни­ческого усложнения, а именно, поддержки давле­ния и вентиляции с двумя фазами положительно­го давления.

Будут продолжаться обеспечиваться работа аппаратов без подачи извне сжатого воздуха и ис­пользование сжатого кислорода только для оксигенации вдыхаемого воздуха. Для аппаратов наи­более высокого класса будет преимущественно ис­пользоваться более гибкая схема с управляемыми
клапанами в линиях вдоха и выдоха. В ней найдут применение электромагнитные устройства, позво­ляющие управлять не только временными харак­теристиками, но и расходом газа.

В более простых аппаратах, видимо, будет пре­имущественно применяться схема с управляемым электродвигателем и мехом, а также схема с нако­пительной емкостью. В этих моделях перспектив­но применение встроенного аккумулятора для обеспечения 20—30 мин работы аппарата после нарушения электропитания.

По-прежнему будет применяться микропроцессорное управление с использованием совре­менной элементной базы и обеспечиваться разборность дыхательного контура. Еще большее
внимание будет уделено упрощению управления аппаратами, в том числе путем использования ав­томатической стабилизации заданных оператором характеристик.

Особенно быстро будет развиваться оснаще­ние аппаратов встроенными и придаваемыми мо­ниторами с измерением показателей давления и объемных характеристик ИВЛ и с сигнализацией
о выходе основных характеристик вентиляции из заданного диапазона. В аппаратах высокого клас­са, по-видимому, станет обязательным вывод информации, в том числе функциональных кривых
на экран.

3.2. Принцип работы аппарата по структурной схеме

Рассмотрим принцип работы аппарата по структурной схеме пред­ставленной на рисунке 3.1.

Аппарат состоит из рабочего блока, блока питания, блока управления и дополнительного оборудования (увлажнителя, блока дозиметров, отстой­ника конденсата ), которые, с помощью дыхательных шлангов, включаются в дыхательный контур.

Дыхательный контур аппарата нереверсивный, т.е. при выдохе смесь поступает через тройник пациента на клапан выдоха.

Так как при выдохе в дыхательном контуре смесь охлаждается, то пре­дусмотрен отстойник для сбора конденсата.

Рабочий блок обеспечивает формирование газового потока и состоит из воздушного компрессора и системы газораспределительных электромагнит­ных клапанов (клапан вдоха и клапан выдоха). Для контроля текущего и среднего значения давления установлены два манометра, показывающие значения давления в тройнике пациента и среднее давление.

Для измерения среднего давления используется интегрирующая цепь, состоящая из пневмосопротивления и пневмоемкости.

Для предотвращения разрыва легких, в случае превышения давления дыхательной смеси выше допустимого предусмотрен предохранительный клапан, который, если давление выше допустимого, открывается и страв­ливает избыток давления.

В аппарате имеется возможность регулировать максимальное давление вдоха от 1 до 6 кПа.

Блок питания преобразует поступающий на него переменный ток на­пряжением 220В в требуемый для других устройств аппарата постоянный ток (напряжением 5, 9, 12, 27, 36 В ), а также осуществляет коммутацион­ные функции электропитания.

Блок управления состоит из двух модулей:

- процессорный модуль;

- модуль индикации и клавиатуры.

Процессорный модуль обеспечивает управление режимами работы ап­парата, а также осуществляет управление работой увлажнителя и системы аврийно-предупредительной сигнализации.

Модуль индикации и клавиатуры обеспечивает ввод параметров ИВЛ, выбор режимов ИВЛ и обеспечивает отображение установленных парамет­ров.

Увлажнитель предназначен для подогрева и увлажнения дыхательной смеси.

Увлажнитель состоит из следующих составных частей:

- блок подогрева воды в емкости увлажнителя;

- блок подогрева дыхательного газа в шланге вдоха;

- блока датчика температуры газа перед тройником пациента.

В качестве дыхательной смеси в аппарате ИВЛ используется либо ат­мосферный воздух, либо смесь воздуха с кислородом , либо смесь воздуха с закисью азота N2О. В ряде случаев при ИВЛ необходима длительная и ста­бильная анальгезия. Эффективным средством является закись азота, для по­дачи которой предусмотрен специальный ротаметр на дозиметрическом блоке.

Баллоны с закисью азота либо с кислородом подключаются к аппарату через блок дозиметров, что дает возможность регулировать расход газа.

Блок дозиметров имеет два стеклянных ротаметра: один измеряет по­ток кислорода в диапазоне от 0,2 до 2 л/мин, а второй — от 2 до 10 л/мин. К блоку дозиметров обязательно присоединяют дыхательный мешок.

Компрессор создает требуемое давление вдоха и через клапан вдоха дыхательная смесь поступает на увлажнитель, где нагревается до темпера­туры тела человека и увлажняется. Если этого не делать, то при длительной вентиляции легких в организме больного могут произойти необратимые па­тологические изменения, а также это может привести к целому ряду заболе­ваний.

Увлажненная и нагретая смесь поступает через тройник пациента к больному. По завершению цикла вдоха клапан вдоха закрывается и откры­вается клапан выдоха, и давление в легких снижается до атмосферного.