двигают следующие задачи для выполнения новых требований:
1)обеспечить получение нужного номинала растяжимости модели легких и стабильность этого
показателя при ее эксплуатации с увеличением диапазона вводимых в модель объемов;
2) обеспечить настройку требуемых номиналов сопротивлений, их воспроизводимость при изготовлении и стабильность в процессе эксплуатации;
3) понять и количественно охарактеризовать воздействие растяжимости аппарата на действительные значения дыхательного объема;
4) оценить влияние других факторов на разницу между заданным и действительным объемом.
Аналогичное требование к этим аппаратам имеется в действующем ГОСТе Р МЭК 60601-2-13—2001.
Рис.3. Схема проверки погрешности измерения выдыхаемого объёма по новому стандарту: 1 – аппарат ИВЛ; 2 – проверяемый измеритель объёма; 3 – сопротивление; 4- модель легких; 5- датчик давления; 6 – регистратор давления; 7 – дыхательный контур.
Для выполнения требований вступившего в действие ГОСТа Р ИСО 10651.1—99 к точности измерения действительного дыхательного объема и к калибровке соответствующего канала аппарата ИВЛ рекомендуется:
1.В качестве действительного значения дыхательного объёма использовать объем, рассчитанный как произведение растяжимости модели лег-
ких и разности максимального и минимального давлений дыхательного цикла, измеренных внутри модели.
Для моделирования растяжимости легких пациента применять только пневматические модели легких, обеспечивая изотермические характери
стики колебаний давления в них и корректировку растяжимости в соответствии с атмосферным давлением в момент применения моделей.
Для обеспечения воспроизводимости и стабильности моделирования сопротивления дыхательных путей пациента использовать нелинейные
дроссели, изготовленные с необходимой точностью и откалиброванные на верхнем пределе диапазона скоростей газа для каждой возрастной группы пациентов.
Ввиду значительного влияния внутренней растяжимости аппарата ИВЛ на действительный дыхательный объем применять схемные и конструктивные приемы для всемерного снижения величины этой характеристики аппарата, указывать ее в эксплуатационной документации.
Дополнять режимы проверки погрешности измерения дыхательного объема, указанные в ГОСТе Р ИСО 10651.1—99, проверкой на несколь
ких других комбинациях установленных значений дыхательного объема и частоты вентиляции, а также при изменении на этих режимах растяжимости
и сопротивления модели легких в пределах, характерных для пациентов данной возрастной группы.
6. Учитывать, что внутреннее сопротивление ап
парата и его инерционные свойства могут снизить
положительное влияние задержки на вдохе на выравнивание давления в участках легких с различными постоянными времени, а также привести к появлению непреднамеренного внутреннего ПДКВ; вероятность и величина этого влияния возрастает при росте отношения Са/Сn, т. е. при вентиляции подростков и детей.
7. Высокочастотные выбросы, нередко фиксируемые на функциональных кривых давления и скорости газа, объясняются главным образом следствием инерционных свойств аппарата ИВЛ в момент резкого изменения величины и (или) направления движения газа и проявляются в виде высокочастотных затухающих колебаний, возникающих в момент резкого изменения состояния системы и моменты смены фаз дыхательного цикла (вдувание, пауза, выдох).
Перспективы развития аппаратов ИВЛ
Будут продолжать расширяться функциональные возможности аппаратов наиболее высокого класса. К режимам управляемой (во всех ее разновидностях), вспомогательной и периодической вентиляции и самостоятельного дыхания с постоянно положительным уровнем давления будут добавлены те новые режимы, показания к применению и реализация которых уже установлены и которые не требуют значительного технического усложнения, а именно, поддержки давления и вентиляции с двумя фазами положительного давления.
Будут продолжаться обеспечиваться работа аппаратов без подачи извне сжатого воздуха и использование сжатого кислорода только для оксигенации вдыхаемого воздуха. Для аппаратов наиболее высокого класса будет преимущественно использоваться более гибкая схема с управляемыми
клапанами в линиях вдоха и выдоха. В ней найдут применение электромагнитные устройства, позволяющие управлять не только временными характеристиками, но и расходом газа.
В более простых аппаратах, видимо, будет преимущественно применяться схема с управляемым электродвигателем и мехом, а также схема с накопительной емкостью. В этих моделях перспективно применение встроенного аккумулятора для обеспечения 20—30 мин работы аппарата после нарушения электропитания.
По-прежнему будет применяться микропроцессорное управление с использованием современной элементной базы и обеспечиваться разборность дыхательного контура. Еще большее
внимание будет уделено упрощению управления аппаратами, в том числе путем использования автоматической стабилизации заданных оператором характеристик.
Особенно быстро будет развиваться оснащение аппаратов встроенными и придаваемыми мониторами с измерением показателей давления и объемных характеристик ИВЛ и с сигнализацией
о выходе основных характеристик вентиляции из заданного диапазона. В аппаратах высокого класса, по-видимому, станет обязательным вывод информации, в том числе функциональных кривых
на экран.
3.2. Принцип работы аппарата по структурной схеме
Рассмотрим принцип работы аппарата по структурной схеме представленной на рисунке 3.1.
Аппарат состоит из рабочего блока, блока питания, блока управления и дополнительного оборудования (увлажнителя, блока дозиметров, отстойника конденсата ), которые, с помощью дыхательных шлангов, включаются в дыхательный контур.
Дыхательный контур аппарата нереверсивный, т.е. при выдохе смесь поступает через тройник пациента на клапан выдоха.
Так как при выдохе в дыхательном контуре смесь охлаждается, то предусмотрен отстойник для сбора конденсата.
Рабочий блок обеспечивает формирование газового потока и состоит из воздушного компрессора и системы газораспределительных электромагнитных клапанов (клапан вдоха и клапан выдоха). Для контроля текущего и среднего значения давления установлены два манометра, показывающие значения давления в тройнике пациента и среднее давление.
Для измерения среднего давления используется интегрирующая цепь, состоящая из пневмосопротивления и пневмоемкости.
Для предотвращения разрыва легких, в случае превышения давления дыхательной смеси выше допустимого предусмотрен предохранительный клапан, который, если давление выше допустимого, открывается и стравливает избыток давления.
В аппарате имеется возможность регулировать максимальное давление вдоха от 1 до 6 кПа.
Блок питания преобразует поступающий на него переменный ток напряжением 220В в требуемый для других устройств аппарата постоянный ток (напряжением 5, 9, 12, 27, 36 В ), а также осуществляет коммутационные функции электропитания.
Блок управления состоит из двух модулей:
- процессорный модуль;
- модуль индикации и клавиатуры.
Процессорный модуль обеспечивает управление режимами работы аппарата, а также осуществляет управление работой увлажнителя и системы аврийно-предупредительной сигнализации.
Модуль индикации и клавиатуры обеспечивает ввод параметров ИВЛ, выбор режимов ИВЛ и обеспечивает отображение установленных параметров.
Увлажнитель предназначен для подогрева и увлажнения дыхательной смеси.
Увлажнитель состоит из следующих составных частей:
- блок подогрева воды в емкости увлажнителя;
- блок подогрева дыхательного газа в шланге вдоха;
- блока датчика температуры газа перед тройником пациента.
В качестве дыхательной смеси в аппарате ИВЛ используется либо атмосферный воздух, либо смесь воздуха с кислородом , либо смесь воздуха с закисью азота N2О. В ряде случаев при ИВЛ необходима длительная и стабильная анальгезия. Эффективным средством является закись азота, для подачи которой предусмотрен специальный ротаметр на дозиметрическом блоке.
Баллоны с закисью азота либо с кислородом подключаются к аппарату через блок дозиметров, что дает возможность регулировать расход газа.
Блок дозиметров имеет два стеклянных ротаметра: один измеряет поток кислорода в диапазоне от 0,2 до 2 л/мин, а второй — от 2 до 10 л/мин. К блоку дозиметров обязательно присоединяют дыхательный мешок.
Компрессор создает требуемое давление вдоха и через клапан вдоха дыхательная смесь поступает на увлажнитель, где нагревается до температуры тела человека и увлажняется. Если этого не делать, то при длительной вентиляции легких в организме больного могут произойти необратимые патологические изменения, а также это может привести к целому ряду заболеваний.
Увлажненная и нагретая смесь поступает через тройник пациента к больному. По завершению цикла вдоха клапан вдоха закрывается и открывается клапан выдоха, и давление в легких снижается до атмосферного.